

EPB/Ser

$$
P H 1 / 3(A B R 5)
$$

Digitized by the Internet Archive in 2019 with funding from Wellcome Library

$$
2-1+2
$$

=

MEMOIRS

 OFTHE
Royal Society ;

Being a New Abridement of the

PhilofophicalTranfactions:

Giving an Account of the Undertakings, Scudies, and Labours of the Learned and Ingenious in many confiderable Parts of the WORLD; from the firf Inftitution of thatIleustrious Society in the Year 1665, to the Year of our Lord 1735 inclufive.

The whole carefully abridg'd from the Originals, and the Order of Time regularly obferv'd, with a Tranllation of the LatinTracts, and the Theoretical Parts apply'd to Practical Ufes; alfo an Explanation of the Terms of $A_{R} T$ as they occur in the Courfe of the Work. Being a Work of general Ufe to the Publick, and wotthy the Perufal of allmathematicians, Artificers, Tradesmen, Éc. for their Improvement in various Branches of Bufinefs.

$$
\frac{\text { By Mr. BAD D A M. }}{\text { V OL. IX. }}
$$

Illuifrated with a great Variety of Copper Plates.
I ONGON:

Printed by G. Smith, in Stanbope-Areet, near Clare-mirket, and Sold by T. Cooper, at the Globe in Pater-nofer-Rozu and W. Shropshire in Old Bond-greet.

$$
\overline{M, D C C, \times L I_{0}}
$$

M E M O I R S OFTHE

ROYAL SOCIETY;
Being a New Abridgment of the
Philosophical Transactions.

How Intermitting Fevers are cur'dat Algier; by Mr. Shaw. Philofophical Tranfactions. No 41 I. p. 183.
 E have a fpecies of the $\int c a b i o f a$ at Algiet, which is of great virtue in curing intermitting fevers. It is not urlike the figure which Morifon gives of his 20 th fpecies $\operatorname{cap} 21 . \int e c t .6$. tab. 14. or of his $125^{\text {th }}$. fpecies, cap. 21. Sect. 6. tab. 15, of corymbiferous plants; only the head is not round, as there defcrib'd. Mr. Sbaw, therefore, calls it, fcabiofa flore pallido purpureo, capitulo oblongo, folüs fuperio. ribus incijis, infcrioribus integris, ferratis. The method of preparing it is to put a handful of it into a quart of water and boil it away to a pint. A coffee difh fall of this decoction, is given the patient fafting, a little before dimner, and at night without any regard to the interval or intermiffion of the fit, as in giving the bark; and it commonly operates by ftool or urine. Mr. Sbaze only faw this plane at Algier, Oran,

$$
A=
$$

Gibralhan

4

MEMOIRS of the

Gibraltar and mount Libanus, where he was firft acquainted with its extraordinary qualities.
Some of the Effects and Properties of Damps; by Mr. Ifaac Green wond. Phil. Tranf. N° 4II. p. $184^{.}$

ON the evening of $\mathrm{fl} / \mathrm{ly}$ I9. 1729. One Mr. Adams and his fervant being employ'd to repair a pump in $\mathcal{B o f o n}$ in New EngLand, uncover'd the well; upon which the former immedately attempted to go down by means of a fingle rope only; but he had not defcended above five or fix feet, before he was render'd incapable of fuftaining his own weight; and without fpeaking, or giving any fings of diftrefs, he nipp'd down fuddenly to the upper 'part of the joint of the pump; where being fupported about a minute, and fetching his breath in a very diftrefs'd manner, he fell down to the bottom, which was eight or ten feet lower, and cover'd with but a very few inches of water, without difcovering any figns of life. Upon this his fervant with great precipitation took the rope in his hand, in order to go down to his mafter's relief: But at the fame diftance from the top, he met with the fame fatal interruption; and without difcovering any figns of diftrefs, he was heard to fall to the bottom.
The workmen above prepar'd a third with a tackle about his waift: Upon his going down he became fpeechlefs; and made no figns at all, tho he had agreed to it: Whereupon being rais'd from the well, he appear'd ghaftly; but upon the ufe of proper means he was foon recover'd; without remembering any thing particular that had paft.

Some hours after this the other bodies were taken up; but wirh all the marks of a violent death upou them,

There was nothing particular as to this well; only that it was fituated near the town-dock, the refervoir or commonfewer of the neighbouring ftreets: It is about 30 foot deep, which in this place is fo confiderable, that it is lower than the furface of the water at the greateft ebb. There had not been an air-tube, or paffage for the external air to communicate with it for fome confiderable time.

The fame evening feveral trials were made on defcending lights, particularly by letting down lighted candles uncover'd, others inclos'd in lanthorns, and others with the lanthorn placed in a pail; but in all thefe trials it was obferv'd, that wharever the circumftances of the light were, it never reach'd above fix feet.

Fuly 20. In the evening Mr. Greenreood repeated fuch experiments in the damp, as related to flame, and found the effect much the fame as before; viz. in about fix feet below the top of the well, the flame would become dimi, and if not immediately rais'd, would change to a blueifh colour, and become more and more contracted or diminifh'd, till in about a minute's time it would be entirely extinguifhed, without any remains or ftench, accompanying the wick. In thefe experiments he particularly obferv'd, that the flame in all its changes ftill continued its pyramidal figure; nor did a quicker or flower defcent make any alteration in thefe circumftances. Ore experiment was very particular, relating to the flame of a candle. He took a common pail, and having fix'd a candle to its. bottom, erect, and about eight inches long, he pour'd as much hot water into the pail, as reach'd within a quarter of an inch of the blaze of the candle. Then having carefully lower'd the pail down the well; the flame, notwithftanding it was defended by the reeking fteams of hot water, went out at the fame depth, and in the fame time as before. After this he immers'd burning coals, flaming brimftone, and lighted matches, all which were extingui/hed with very little difference as to the time or other circumftances.

Two experiments were made relating to animal life. A large kitten was very much affected in about a minute's time; and after three minutes become fo weak, that after the was taken out, the could not ftand on her legs: Being at length pretty well recovered, fhe was carefully bound up in a filk handkerchief, that fhe might be the more eaflly fufpended ${ }^{3}$ and letting her down about 16 or 18 feet, in three minutes the was affected in the like manner as before, making a very diftreft noife, and in about five minutes fhe was in fuch extraordinary convullions, as rendered the fight not a little difagreeable: But in thefe throws the difengaged herfelf, and fell to the botrom, without making any efforts to fiwim: Whence he concluded they were the laft ftruggles for life, in which the broke loofe.

He tried the fame fatal experiment upon a fmall bird; which being fufpended in the damp about three minures, was found entirely fenfelefs, and according to all appearance paft recovery. Upon taking it in his hand he found it very cold, and without the leaft motion, that he could difover: However, keeping it clofe between his hands, which were pretcy

MEMOIRS of the

pretty warm, in about a minute he felt a fmall palpitation, which prefently increafed to a ftronger pulfe; till in about σ or 7 minutes the bird was reftored to a perfect and uninterrupted refpiration. About half an hour alter, he again put the bird into the damip, and continued it there about 5 minutes, after which he found jt paft recovery.
fuly 2 1. Mr. Greenwood rcpeated feveral of the experiments relating to lights and flame, which fucceeded with very little (if any) alteration, as before; which he look'd upon as an undoubted confirmation of the continuance of the damp. Upon which he proceeded, firt, to examine the elafticity of the air in the well, by letting down a fmall bell; the found of which was as diftinct and loud as in any ordinary well of the fame depth.

Then in order to difcover the degree of moifture, he took a large fpunge, a little wet, which with the filk ftring it was let down by, weighed 278 grains. This being fufpended in the damp, upwards of five minutes, and then rais'd, was carefully weigh'd, and found to be of the fame weight precifely. After this he dried the fpunge, which then weighed but 261 grains; and having applied it to the damp for the fpace of 10 minutes, he likewife found, that it had not gain'd the leaft perceivable weight. In like manner, a large bundle of catgut, weighing two ounces, 15 penny weight, 10 grains, did not acquire the leaft addition of weight, by being fufpended therein for a confiderable time.

To thefe experiments he added one upon the hydroftatical balance, in order to determine whether there were any difference as to the denfity, or fecific gravity of common and this yisiated air. The balance was very large, and accurately pois'd; and the folid, which was a globe, was four inches eight tenths in diameter. This together with its ftring weighed in the ait feven ounces, fix penny weight; and after immerfing it in the damp, it lof nothing of its weight; being then in equilibrio to fo great a degree of exactnefs, that half a grain would pieponderate on either fide.

This damp abated more and more, by being expos'd to the air; till on fuly 25 . perfons were let down to the bottum without any inconveniency.

The other inftance Mr. Greenrood gives is of a very fudden fubterraneous vapour on May 9,1729 , in a well in Sibool-boufefireet, Bofton.

This well had been open'd for fome confiderable time'; and not only enlarged in its diameter, but dug fourteen or fifteen feet deeper. Upon which one Mr. Rennief, and a young man called Ruflel, undertook to lay the ftones. They had been employ'd all the day, till about fix o' clock in the evening, when Rennief perceiv'd a very unufual ftench, with which he firf upbraided his partner as an act of indecency; till by the extraordinary increafe thereof, he was apprehenfive of fome greater danger. Ruffel was hitherto infenfible of it; but perceiving his partner's vifage to change to a very uncommon degree, called up for help; at which inftant, as he afterwards expreffed himfelf, be firft perceived a very frong noifome fmell, like rotten fifb, swhich on a fudden Seis'd bis fenfes, and render'd bim unable to fuftain bis own rweigbt. Rennief had di. rectly clofed his mouth and noftrils with his hand; and when the bucket was lowered with a third perfon for their relief, he affifted in getting Rufel into it. As the bucket was raifing, Rufel was taken with very unufual and extraordinary fits; and when he was laid upon the ground, till Rennief was taken out, he could hardly be kept fill by the united ftrength of 3 or 4 perfons; but bounding and writhing his body, like a fifh newly taken out of the water. Rennief was affected only with fainting fits. After 3 hours $R u / \int e l$ recovered of thefe extraordinary convulfions; but was diforder'd in his brain all the night; and tho' Rennief was fooner relieved of his fits, he continued exceedingly difordered for a longer time. It was rhought remarkable, that neither of them was affected either with vomiting or purging.

This accident happened on Friday, and on the Monday they were both reftored to perfect health. The well continued infected for a very little while; and when on the Monday following fome others renewed the work, nothing noifome could be perceived.

Mr. Greenswood does not remember, that there is any inflance of fuch a tranfient vapour or damp, recorded in the Pbilofophical Tranfactions; and ownshimfelf at a lofs to account fur it, fhould there be fubterraneous exhalations, which, like the clouds or wind in the atmofphere, fhifted from one place ta another, it might be of confiderable importance to obferve the particulars thereof; efpecially, licich as are malignant, as this was. The paffage of this vapour was about 2ς feet below the furface; a depth too great for it to affect cellars or vaults.

It is to be noted that this part of $\mathcal{B o f t o n}$ lies very high; and the ground for about 10 foot, hard clay; and the reft a courfe fand and gravel.
An Account of an ancient Well near Quenborough in Kent;
by Mr. Peter Collifon. Phil. Trani. $\mathrm{N}^{\circ} 41 \mathrm{I} . \mathrm{p} .19 \mathrm{I}$.

1HE king's officers of Sheerne \int_{s} and Cbatbam (by order of the Commiffioners of the Navy) met Sept. 24, 1723. at the well near Queenborough, where the caftle formerly ftood, and upon founding it finding but very little water at the bottom ; and it having a new curb, fixt on the top, they provided themfelves with buckets and ropes, and lowered down a man, who acquainted them it was clean'd, and the ground funk 4 feet deeper than the curb at the bottom. They then meafur'd its depth and found it 200 foot, and artificially fteened the whole depth with circular Portland ftone, which is all entire and ftands fair, the mean diameter being 4 foot, and 8 inches: But obferving that not a drop of water came into it, they refolved to try, whether they could find any by boring; in order to this they procured'a piece of timber about 7 foot long, and boring it thro' with a three inch and a halt augre, they fixed! this trunk at the bottom of the well, and faftened it by quar-ters to the curb at the bottom, to prevent its rifing, and filled it all round 3 foot deep with clay, and on that laid 4 courfe of bricks for a platform for the men to ftand on in boring, and likewife procured an augre of 2 inches and $\frac{1}{2}$, to bore thro' the clay; when Sept. 26.3 men at a time began to bore, who were fhiffed every 3 hours: The boring they fent up was a very clofe bluifh clay, which continuing the fame after 3 days and $\frac{x}{2}$ boring, they began to defpair meeting with water; but on the 30 . of Sept. in the evening, as they were boring, the augre flipt down at once, and up came water; and in an hour's time there was upwards of 4 foot water which rofe fo faft, that ant I2 o'clock at nonn

On the 1. of OEtober there was
feet inches
2. at 5 in the afternoon
$55 \quad 10$
3 . at 3 in the afternoon 1326
4. at 3 in the afternoon 1496
$\begin{array}{llll}\text { 5. at } 4 & \text { in the afternoon } & 161 & 3 \\ \text { 6. at } 10 \frac{x}{2} \text { the morning } & 167 & 8\end{array}$
$\begin{array}{lll}\text { 7. at } 4 \text { in the afternoon } & 174 & 0 \\ \text { 8. at } 9 \text { in the morning } & 176 & \text { y }\end{array}$ and it nill increafed, tho' nowly.

Royal Soctety．

The reafon of its not rifing fo much now as at firf，they ap－ prehended was owing to the weight of the water，which the ipring muft force up thro＇the hole of the trunk，and the well being wider above than below．What they took to be very ex－ traordinary was，that they bored Si feer below the foot of the trunk，before they met with this body of water，which by com－ putation is 166 feer below the deepeft place in the adjacent feas． The water proves very good，foft，fweet and fine ：They com－ pared it with the beft fpring water brought from Milton：and in every body＇s opinion that tafted both，they declared the well－ water the beft．They put fome foap to it，and it lather＇d finely；they boiled old peafe in it，which performed very well and they had great reafon to believe，that the fpring would rufficiently fupply his Majefty＇s fhips，as propoied．
Obfervations made in England cind Italy on the Meteor called the Ignis Fatuus；by Mr．Derham．Phil．Tranf．No 41 If p． 264.

IT being the opinion of divers ikillful naturalifts（particularly Mr．Francis Willougbsy and Mr．Ray）that the ignes fatuof are only the hining of a great number of the male glow－ worms in England，or of the pyraufte in Italy，flying toge－ ther，Mr．Derbanh had a mind to confult his curious and ins， genious friend Sir Thomas Derebam about the phenomenon， being informed，that thofe ignes fatui are common in all the parts of Italy．But of the pyraujce，or fire－fies，he never ob－ ferved any fuch effects，tho＇there be a vaft number of them in fune and fuly：He moreover fays，that thefe pyraufte are called Lucciole，i ．e．fmall lights，and that they are not the farfalls（as Mr．Ray thought）which are butterflies．

But Mr．Derbam had good reafon to think that infects are not concerned in the ignes fatui，from the following obferva－ tions；the firft of which he himfelf made，and the others he received from Italy．

Mr．Derbam made his own oblervation at a place that lay in a valley between rocky hills，which he fufpects might contain minerals，in fome boggy ground near the bottom of thofe hills ： Where oblerving one in a calm，dark night，with gentle ape proaches he got up by degrees within two or three yards of it， and view＇d it with all the care he poffibly could：He found it frifking about a dead thiftle，growing in the field，till a fonall motion of the air（even fuch as was caufed only by his drawing

Voむ IX．
near it) made it fkip to another place, and thence to another, and fo on: So that he took it for a fired vapour.

The male glow-worms he knows emit their flining light, as they fly; by which means they difcover and woo the females; but he never obferved them to fly together in fo great numbers, as to make a light equal to an ignis fatuus. And he was fo near, that had it been the Rining of glow-worms, he muft have feen it in little diftinet fpots of light; whereas it was one continued body of light.

Mr. Derbanz next gives an account of the obfervations of the ignes fatui, procured for him in Italy, in the following letter of Dr.agiacomo Bartbolomeo Beccari to Sir Thomas Derebam, dated at $\operatorname{Rologna,~OEX.~23,1728.~}$

- Ifend you the following obfervations on the ignes fatui. - What I am now going to offer you, concerning thele fiery ap"pearances, is the refult of feveral converfations I had upon - this fubject with feveral experienced travellers, men of learn-- ing and reputation, whofe fincerity I had no reafon to miftruft. - For my own farther fatisfaction, ever fince I received your com-- mands, i have made it my bufinefs to fpeak with as many as - I could light of, with fuch as travell'd much in the mountains, ' and with others that obferved them in plains, on purpofe too - fee whether or no the difference of the place made any fenfiblee - difference in the appearance. I find upon the whole, that they - are pretty common in all the territory of $\mathcal{B o l o g n a}$. To begin - with the plains, they are very frequently obferved there; the - country people call them Cular $/$ 亿, probably, from fome fancied 'refemblance to thofe birds; and becaufe they look upon them ' as birds, the belly and other parts of which are refplendent ${ }^{6}$ like our fhining flies. They are moft frequent in watery and - morafly ground; and there are fome fuch places, where one ' may be almoft fure of feeing them every night, if it be dark: 'In the fields near the bridge Della Calcarata, in a common, - belonging to the parifh of S. Maria in dono, north of Bologna: ' one of thefe fiery appearances is very often obferved to movec ' a-crofs the fields, coming from anorher bridge, called Della - $f_{0} f\left(\frac{1}{a}\right.$ guadre. There is another of them in the fields of Bag: - nara, almoft eaft of Bologna, which fcarce ever fails to ap. - pear in dark nights; particularly when it rains or fnows; ats - alfo in cold and frofty weather: Both thefe, I mean that neant 'the bridge of Calcarata, and that in the fields of Bagnarat, 'are very large'; and I am affur'd, that fometimes their light iss
${ }^{3}$ equal to that of one of our ordinary faggots, or bundles mad - of vine-branches; and that it is fcarce ever lefs than that of ' the links which our country people make of hemp.ftalks, and - which they light themfelves withal, when they travel in the ' night. That at Bagnara appeared, not long fince, to a Gen-
' tleman of my acquaintance, as he was travelling that way; it
' kept him company for a mile or better, conftantly moving be-
' fore him, and cafting a ftronger light on the road, than the
' link he had with him.
- I believe there may be feveral more in other plains, as large ' as thefe two ; tho' at prefent I have not been able to get cer' tain information of any others. Leffer ones there appear a ' good many; fome of them giving as much light, as a lighted 'torch; and fome are no bigger than the flame of a common 'candle. Of thefe I have been affur'd a good many have been - obferved in the fields of Barifella. All of them have the - fame property, in refembling, both in colour and light, a - flame ftrong enough to reflect a luftre upon neighbouring objects ' all round. They are continually in motion; but this motion ' is various and uncertain. Sometimes they rife up; at other 'times they fink. Sometimes they difappear of a fudden, and - appear again in an inftant in fome other place. Commonly 'they keep hovering about fix foot from the ground. As they 'differ in largenefs, fo they do in figure, fpreading fometimes - pretty wide, and then again contrasting themfelves. Some"times breaking to all appearance into two, and a very little 'while after uniting again into one bpdy; fometimes floating ' like waves, and letting drop fome parts, like fparks oit of a ' fire. I have been affured, that there is no dark night all the ' year round, in which they do not appear. And in the very " middle of winter, when the weather is very cold, and the 'ground covered with fnow, they are obferved more frequenly 'than in the hotteft fummer. The Gentleman, who gave mee ' an account of that at Bagnara, told me, that if I had a mind 'to fee it myfelf, I might be fure of finding it, if I went thithere "in very cold weather; and in a fharp froft. Nor doth either rain or fnow in any wife prevent or hinder their appearance : On the contrary, they are more frequently obferved, and caft a ftronger light in rainy and wet weather. This laft circumIfance, it is true, has been taken notice of by tome writers, " and among the reft, if I remember right, by the learned Gaf'Sendus. Nor does the wind much hurt them; tho' one fhould "shink, that if is were a burning fubftance, like common fire;

12

 M EMOIRS of the' it flould either be diffipated in windy weather, or extin, ' guifhed by rain. But fince they do not receive any damage - from wet weather; and fince, on the other hand, it hath never - been obferved, that any thing was thereby fet on fire; tho' ' they muft needs in their moving ton and fro, meet with a - good many combufible fubltances; it may thence be very ' reafonably inferred, that they have fome retemblance to that

- fort of phofphorus, which doth, indeed, fhine in the dark;
- but doth not burn any thing, as common fire doth: Nor is
- there any thing extraordinary in this any more than in other
- fiery appearances, which likewife are pretty common, and a'gree with the ignes fatui, in having only the fplendor and - appearance of fire, without the quality of burning, but differ - from them in a good many other particulars. Such a phe-
- nomenon was oblerved by a noted Clergyman of Bologna
' one fummer's evening, near fome country people's houfes.
- The flame feemed to him fo ftrong, that he called to them
' to put it out, for fear it fhould reach a hay-loft, and a heap
4' of hemp, that lay not far from it: But when he came to the
- very place where he had firft feen the flame, he perceiv'd
' that it was only an appearance, obferving not the leaft trace
" of fire; the' he affur'd me there lay a good deal of combui-
" tible ftuff all thereabouts, which would have eafily took fire,
- if there had been any thing of an actual flame upon the fpot. The fame Gentleman told me, that in a very dry
fummer, he obferv'd, in the middle of fome other fitlds of
- his own, for feveral evenings togethcr, a pretty confiderable
- flame on the ground, nearly in the fame place, and that having refolved to go and take a nearer view of it the next
' evening, it did not appear for that time; that however he
- went to the fame place where he had beforc feen it, and fet
' himfelf down on the ground; but could not obferve the leart
' mark of any fire or flame having been on that for, nor feet
" any heat in the ground any more than in other places; only " he obferv'd fome flight flames, arifing out of the ground hard
'by; which difappear'd as foon as they came into the open
air. It is well known to people that travel on horfeback
- at the beginning of the night, in the heat of fummer, when
' they traverfe the dry beds of rivers, and break with the
- horfes feet thofe fandy grounds that have been all day long
©frongly heated by the fun, there rife up fome bluifh Hames,
'which very offen frighten the horfes. This phenomenun is.
" moit commun in thole places where the water hath left behind
'a kind of a chalky fediment, or fat earth, which drying af-- terwards forms a thick hard cruft. So in like manner it in ' the heat of fummer you travel in dark nights, either on horle'back, or on foot, over the parched ground of fome felds, you ' Shall fee flames break out of the ground almoft at every ftep. 'All thefe fire and flames have, it is true the light and hining. 'but not the burning quality of fire, whether from the exceed-- ing fmallnefs or rarity of their parts, as fome apprehend, or 'for fome orher reafon, I will not determine. And this is 'the only thing they have in common with the ignes fatui, 'differing very much in other refpects, particularly in not ap-- pearing at all feafons of the year, and mort frequently in the ' winter, as the others do. Thus far, what I could leam con'cerning the will with a wisp, as it hath been obererved in the ' plains.
' As to the appearance of this phenomenon in mountainous 'parts, by what I have hitherto been able to learn, they differ ' nothing elfe but in largenefs; and all thofe I convers'd with, "that faw them in the mountains, agree in that they never ob"ferved any larger than the flame of an ordinary candle. Nor "do thofe that live in the mountains call them cular $\hat{2}$, which 'name is, perhaps, us'd only by the country people in the 'plains for thofe large ones above deferibed. The difference ' f the air, and that of the foil may, for ought I know, con' tribute a great deal rowards the differemt fize of thefe appear-- ances; at leaft all that I can offer material at prefent towards - folving this particular circumftance, namely with regard to - their largenefs, is, that thofe grounds whete we obferve the - largeft fires, as at Bagnara, are what they here call ftrong 'ground (terreni forti) being a hard, chalky and claiey foil? - which will harbour the water a long while, and is afterwards, ' in hur weather, very apt to break inio large cracks and fiffures: - Whereas on the contrary, thofe foils in the mountains, where 'they oblerve the fmall fires, are what they call loft, or freeet ' ground (terreni dolci) being generally 1andy, and of a more i luofe contexture, which do not keep the water fo long as the 'others. Of that fort alio is the foil in the above mentioned plains of Barifella, where about 7 or 8 years before, they ob-- ferved a good many of the fmalleft ignes fatui in the fields, - within the compaif of about 3 miles.
- According to the beft informations I have hitherto been able ' to procure, thefe lights are frequently obferved along the - banks of brooks and rivers, probably, becaule the air conveys.
"them thither more eafily than any where elfe. In all other - particulars, as in their motion, the manner of their appear' ance, their difappearing fometimes fuddenly, their light, the
"height they rife to, and their not being caufed either by rainy " or cold weather, they are the very fame with the cular $\sqrt{6}$
'above-defribed, or the large will with a wifp, as obferved
- in the plains.
- I cannot forbear adding the following obfervation, which in
- my opinion is very curious and fingular; and for which I am
' indebted to a young Gentleman, a very accurate and knowing
- obferver of natural appearances. Travelling fome time in
' March 1728, between 8 and 9 o'clock in the evening, in a
- mnuntainous road not far from our Lady Del Sarro, about 10
- miles fouth of Bologna, as he approached a certain river cal -
- led Rio verde, he perceived a light which fhone very ftrongly
- upon fome ftones that lay upon the banks. It feemed to be
- about 2 foot above the ftones, and not far from the water of
' the river; in figure and largenefs it refembled a parallelopi-
- ped, fomewhat above a Bologne/e foot in length, and abou
- half a foot high, its longet fide lying parallel to the horizon:
"its light was very ftrong, infomuch that he could very plainly - diftinguilh by it part of a neighbouring hedge, and the wa-* ' ter in the river; only in the eaft corner of it the light was ' pretty faint, and the fquare figure lefs perfect, as if cut off, on "darkened by the fegment of a circle. The Gentleman's curio
- fity tempted him to examine it a little nearer; in order to " which he advanced gently towards the place; but was furt - prifed to find, that it infenfibly changed from a bright red tct - a yellowifh pale colour, in proportion as he drew nearer; anci "that when he came to the place iffelf, it was quite vanifhed
- Upon this he ftepp'd back, and he not only faw it again; buy
i found that the farther he went from it, the ftronger and - brighter it grew; nor could he upon narrowly viewing the ' place where this fiery appearance was, perceive the leaft black ' nefs, fmell, or any mark of actual fire. The fame obletva - tion was confirmed to me by another Gentleman, who fre - quently travels that way, and who affur'd me, that he haci - obferved the very fame light 5 or 6 different times, in fpring ' and autumn; and that he had always obferved it of the very " fame thape and in the fame place; ' which to me feems versy - difficult to be accounted for. He told me farther, that oncia - he took particular notice of its coming out of a neighbouring - place, and then fettling itfelf into the figure above-defcribedi
- How it comes to pafs, that the nearer one approaches to thefe, ' or the like fiery appearances, the fainter they grow, till at ' laft they entirely difappear, I very freely own myfelf at a ' lofs; but ftill I cannot help thinking, that there is fomething ' in it analogous to what we obferve in fogs and clouds, - which at a diftance have indeed, the appearance of very thick bodies, but are found more rare as one gets into them: Nor is it improbable, as they muft be fomething very thin and fubtile, that upon the approach of groffer bodies with their atmofpheres they are actually driven away.
- This is the fubftance of what I could gather from feveral accounts relating to the ignes fatui: But as to the caufes of them, I will not pretend to affign any. I will only add, that all that ever obferv'd any of thefe fiery appearances agree, and you may affure Mr. Derbam of it, that they caft a light quite different from that of the fbining flies; and if you pleafe to reflect on the feveral Circumftances above re' lated, I believe you will find, that they are not eafily, if at all, to be folv'd by that hyputhefis.'

A hunar Eclipfe at Bononia, by S. Manfredi, Phil. Tran!, N° 41I. p. 215. Iranfated from the Latin.

Phafes.
H.
$11 \quad 56 \quad 52$ The Eclipfe certainly begun.
12 II 33 The beginning of Copernicus immerged.
1256 The center of Copernicus. But determin'd $2^{\prime \prime}$ fooner.
1945 The beginning of Tycbo immerged. But determin'd $2^{\prime \prime}$ fooner.

2054 The middle of Tycho.

2143 Tycho entirely immerged.
2343 The beginning of Plato immerged.
2442 The middle of Plato
$25 \quad 23$ Plato entirely immerged.
25 ss Infula in finu medio immerged.
2735 Manilius entirely immerged.
2935 Arifoteles
327 Menelaus
35 - Plinius.
3849 Promontorium Jomni.
3926 Promontorium acuturs.
16 MEMOIRS of the

True Time. H. " "
124416 Fraoaforius.
$45 \quad 42$ Prochus.
4659 The beginning of Nare Crifium immerged.
4947 The middle of Mare Crijum: But determined $4^{\prime \prime}$ fooner.
5219
Phafes.
536 Petavius.
5554 The total immerfion of the moon.
14. 3425 The beginning of the emerfion. Doubtful.
3730 Grinualdus begins to emerge.
3820 Galilous entirely emerged.
3828 Grimaldus.
3945 Arifarcbus.
44 4. Keplerus entirely emerged.
4833 Plato begins to emerge.
4937 The middle of Plato emerged.
5042 Plato entirely emerged.
524 ? Copernicus.
5532 Bullialdus.
15 - 56 Tycho begins to emerge.
2. 36 The middle of Tycho emerged.
350 Tycloo entirely emerged.
450 Lhanilius.
${ }_{7} 47$ Menelaus.
112 Dionysus.
if 37 Plinius.
$18 \quad 53$ Promontorium acutum
$20 \quad 30$ Mare Crifum begins to emerge
2059 Prochus entirely emerged.
2335 The middle of Mare Crifum emerged.
350 The end of the eclipfe.
Tranlated from the Latin.
Time.H. " "
I2 1 o The fhadow at the moon's limb.
749 The beginning 7$\left.\begin{array}{lrl}9 & 4 & \text { The middle } \\ 9 & 50 & \text { The end. }\end{array}\right\}$
"Prue time.
H. IIPhafes.
$x_{2} 150$ The beginning16. 26 The middle17 O The end.
I7 II Heraclites begins to immerge.
1729 Half immerged.
1740 Entirely immerged,
2226 Helicon begins to iminerge
2241 Half immerged.
237 Entirely immerged.
2350 Iycbo begins to immerge.
2441 Half immerged.
2525 Entirely immerged.
2843 Plato begins to immerge:
29 I4 Halfimmerged.
2950 Entirely immerged.
3 I 5 Manilius begins to immerge.
32 ० Half immerged.
3245 Entirely immerged.
354 Menelaus begins to immerge.
3545 Half immerged.
368 Entirely immerged.
5137 Mare Crifum begins to immerge.
5410 Half jmmerged.
568 Entirely immerged.
Ij 016 The total immerfion.
Time.
H. ' 1 Emerfions.
143824 The light at the monn's limb.
4j 24 Grimaldus entirely emerged.
4434 Keplerus entirely emerged.
4614 Heraclides begins to emerge.
4654 Half emerged.
47 24 Entirely emerged.
4910 Helicos begins to emerge.
504 Half emerged.
5044 Entirely emerged.
5124 Plato begins to emerge.
52 i Halfemerged.
5244 Entirely emerged.
I5 75 Tycbo begins to emerge.
713 Half emerged.
Vor. IX. I C

Time

Emerfions.

H.

${ }_{5} 5 \quad 8 \quad 18$ Tycbo entirely emerged.
2639 Mare Crifum begins to emerge.
$28 \quad 38$ Half emerged.
355^{5} Entirely emerged.
38 o The total emerfion.
The obfervations were made with a telefcope nine Roman teet in length, the sky without clouds but fomewhat foggy: The moon's horizontal diameter raken at $15^{\mathrm{h}} 46^{\prime}$ intercepted 2934 parts of the micrometer, whereof her vertical diameter contain'd 2877 ; but the fun's diameter was obferv'd the day before to poffefs 2830 fuch Parts.

13	0	16	The total immerfion.
14	38	24	The beginning of the emerfion.
I	38	8	The
3	37	0	Thera.
		The duration of the eclipfe.	

Omiting the refraction of the Sun at noon, the tangents in the gnomion (the horizontal diameter of whofe aperture was $\frac{70}{100000}$) were

Aug. $7 \cdot\left\{\begin{array}{l}48190 \\ 47040\end{array}\right.$
Aug. $8 .\left\{\begin{array}{l}48801 \\ 4773 \text { I }\end{array}\right.$
An examination of M. Perault's nerv invented axis in Peritrochio, Said to be entirely free of friction. By Dr. Defagu-liers. Phil, Tranf. N .412 . p, 222.
Perault's account of his engine is as follows: 'In imin
11. 'tation of the (modern) crane, I have invented two)

- engines for raifing weights: 'The firft is made of that ergam
" which is the moft advantageous of any in mechanics, for fa-
"cilitating motion; becaufe it is free from that inconveniency,
- which we meet with in all others, namely, the friction off
- the parts of the machine, which renders their motion mores
- difficult. This organ is the roller, which Ariforle preferss
- to all other organs; becaufe all the others, as wheels, cap-1
- flanes, and pullies, muft neceffarily rab in fome of their parts::

Fol. IX.
PLATE.I.

'But the difficulty was to apply the roller to an engine that railes weights; its ufe having only been hitherto to caufe ' them to roll on a horizontal plane. The engine which I propofe has a bafe A A B (Fig. . Pl. 1.) fomething like the crane: This bafe has in its upper part the horizontal piece B, which clafps an upright thaft CO, fupported under its - pivot C, on which the whole engine moves in the fame manner, as the crane, when the weight is to be lower'd. This ' Shaft fupports on it's top a crofs piece D D, to which are fa' ftened the ropes. E E, which wrap around the barrel, axle, ' or roller F, which has another rope G, that likewife wraps ' or winds round one of its ends; this laft rope is that which ' raifes the weight: At the other end of the axle there is a - large wooden wheel like a pully H H, about which is wound ' a long rope \mathbb{N}.

- To work this engine, one muft pull the long rope \mathbb{N}, which caufing the large wheel to turn, does likewife carry round the axle or barrel, which is made faft to it. This axle asit turns round, caufes the ropes E E to wind about it; and thereby the axle and the wheel rife, whilf the rope E, to which the weight is faften'd, does alfo wind itfelf up upon the axle the contrary way; and this double winding up of the ropes, makes both the burden and the axle and wheel to rife at the fame Time. Now it is evident that all this rife is performed without the friction of any part; and confequently, the whole power, which draws the rope N , is employ'd without any hindrance; which cannot be in other engines.
- It may be objeacd, that the power which acts at N muft 'befides the weight, likewife raife the axle and large wheel; ' and that their weighr is one of thofe obftacles which Ariforle ' fays all engines are liable to, and that this obftacle is equiva' lent to the friction, which is in other organs. But it may be anfwer'd, that friction which is an obflacle wholly unavoidable ' in all other organs, but that it is eafy to remedy the obttacles ' of this, which is done by means of a heavy body M, taken ' equal in weight to the great wheel and axle, which it fuf'tains by means of the rope II, which running over the 'pullies $L I$, is fix'd to the ring or collar K, that goes round 'the axle F: For, the axle and wheel being counterpois'd by "this weight, the power, which atts by drawing the long rope - N , acts in order to raife the weight only. The experiment, - wh.ch was made with this engine, has confirmed the truth
C_{3}

20

MEMOIRS of the

- of this problem, by comparing its effects with thofe of the
-crane, in which the proportion of the bignefs of the axle,
- to the circumference of the wheel, was the fame as in my
- machine: For, it happened that in the crane the weight of
- one hanging at a rope going about the wheel, drew up a
' weight of 7 , when it had one half added to it to make it
' proponderate, or give motion to the power: And when the
- weight to be rais'd, and that which ferv'd as a power, were
- proportionably increas'd, there was alfo a neceffity to increafe
- the additional weight, which made the power proponderate
' in the fame proportion: So that it was requir'd to add one
' half to the power, when the weight was feven; the addition
' to the power became one for a fourteen pound weight; two
- for a 28 pound, four for a 56 , and foon; becaufe the refif-
'tence from friction increafes nearly in the fame proportion,
'that the weights are decreas'd. But this did not happen to
'any engine, in which one quarter was always fufficient for the
- draught (or to make the power preponderate) not only when
'the weight was feven, but likewife when it was 14 . pound,
' 56 pound, EGc. which evidently fhews that this engine acts
' without friEtion.'
Thus far M. Perault. But however plaufible this defcription may appear, a little attention will fhew, that if this new engine had no friction, yet it is more ineonvenient than an axis in peritrochio with the fame proportions; and likewife that it has more friction than the fame machine in the common ufe. ACE (Fig. 2.) reprefents a common axis in: peritrocbio, which has the wheel AE five times bigger in diameter than the axle: So that A C, the radius of the wheel (which is the diftance of the power) is to C B the radius of the axle (the diftance of the weight) as 5 to 1 ; confequently (for inflance, one ounce, as in our experiment) will keep five in equilibrio. Now the friction of the gudgeon at C is unavoidable, yet it may be diminifh'd, by diminifhing the diameter of the gudgeon, provided it remain ftrong enough to fuftain the machine and its burden. Here one pennyweight, or $\frac{1}{20}$ of the power added to it, makes it preponde rate, and give the machine motion with a due velociry.

Now this very engine, made ufe of in M. 'Perault's way, alters the diftances of the weight and power in fuch a manner, that inftead of one for our power, we mult have iwo and al half to keep the very fame weight 5 , in cquilibrio, as may appear by Fig. 3 . where, fince in the ation of the machine,
when we pull the rope PA, we make the axle D B to wind itfelf up upon the rope. $H D$; it is evident that D is now become the center of motion, DB (the whole thicknefs of the axis) the diftance of the wheel $=2$; and the diftance of the power is reduced to $\mathrm{AD}=4$. So that if two men, having been employ'd in the common way to raife weights, equal to the ftrength of ten men, an engineer fhould after the manner of working, and fit up the axis in peritrocbio in M.Perault's way, inftead of gaining an advantage, he muft call in three more men to perform the work: If it be anfwer'd, that what is loft in ftrength, will be gain'd in time; it may not only be faid, that one cannot always call in more help on the fudden; but that even then, tho' we fhould not call this an inconveniency, yet there will be fill more friction in this than in the common method; for the roller or axle will find a difficulty to wind up the ropes, becaufe they are not perfectly pliable; and the lefs fo, the greater the weight is that ftretches them. This, together with the friction of the collar of the rope of the counterpoife to the engine, makes the hindrance greater than in the common way. For, it appears by experiment, that when the power is become equal to 2 and $\frac{\pi}{2}$ to keep the weight 5 in cquilibrio, there mult be added $\frac{5}{3}$ (here four penny weight) to put the power in motion.

And to fhew that this friction of the ropes is not always the fame, as M. Perault fuppofes it; when P (or the power) is made only one ounce, and W (or the weight) two ounces, then to make the power proponderate, only two penny-weight and 18 grains was fufficient.
$N . \mathscr{B}$. When P is $=2$ and $\frac{x}{2}$, and $W=5$; the additional weight, mark'd $\frac{7}{\delta}$, was four penny-weight and two grains.
A fartber Examination of 'M. Perault's Niachine, faid to be reitbouc Frittion; by the fame. Phil. Tranf. ${ }^{\circ} 40$. p. 228.

1N every inclination of the plane; if the fine of the angle of inclination be taken in parts of the radius of the axle, or roller, the power: will be to the weight:: as the radius of the roller + the fine of inclination: to the radius of the wheel - the faid fine of inclination; that is, $\mathrm{P}(=\mathrm{I})$: W $(=3):: d k: a k$.

In the prefent experiment B E (Fig. 4. Plate r.) reprefents an inclined plane, on which the roller C is to roll up, touching the faid plane at the point c; $A M$ the wheel behind that
plane; another fuch plane, and equally inclined, being alfo fuppos'd behind the wheel to fupport the other end of the roller.

The lines of direction of the power and weight being $a P$ and $d \mathrm{~W}$, thro' the point of contact, or centre of motion, c draws AD parallel to the horizon, and perpendicular to $a \mathrm{P}$ and $d \mathrm{~W}$; thro' the centre of the engine, C draws $a d$ parallel to AD. Suppofe the angle $B C A$ of the inclination of the plane to be 30°, the right fine will then be equal half the radius; therefore, dividing C_{2} (the radius of the roller) into two equal parts at k; if you draw $k c$ and $C c$, the angle $k c C$ will be equal to $B \cdot A$, and its fine will be $C k$. Now fince it is evidently the fame thing to make ufe of ad for a lever, whofe centre of motion is at k, as of $A D$, equal and parallel to it, with its centre of motion at c; it follows, that in this inclination of the plane, the diftance of the weight $d k$ is greater than $d \mathrm{C}$ (the diftance of the weight in the common ufe of this engine) by the addition of the quantity Ck , the fine of the angle of inclination; and $k a$ the diftance of the power is lefs than $\mathrm{C} a$ (the diftance of the power in the com ${ }^{2}$ mon way) by the fubftraction of the faid quantity, or fine $\mathrm{C} k$; confequently; that on an inclined plane, the power: is to the weight : : as De: to c A.Q.E.D.

Corollary 1. Hence it follows, that the radius of the wheel, and the radius of the roller being given, the lofs of power may be found in any inclination of the plane. Thus, as here, the power, which in the common way would be but $\frac{1}{5}$ of the weight, muft be $\frac{\pi}{3}$ of it: So if the angle of the inclination of the plane were but $11^{\circ} 32^{\prime}$, the power would be $\frac{x}{4}$ of the weight, Ěc.

Cor. 2 . Hence it likewife follows, that if the plane B E be horizontal, no force of the power will be loft; becaufe c g : $c f:$: CG: to CF.

Scbolium. As the friction of the winding of the ropes, fuch as $B c$ in the new way, is greater than the friction of the pivott in the old way (befides the friction of the collars of the counterpoife to the engine) fo that friction diminifhes, as the ropes bears lefs weight, according to the diminution of the angle off the plane; and when the plane is horizontal, and without a counterpoite; even then the winding up of the ropes, and preffure of the roller againt the plane, is equal to the friction in the common way.
N. B. The experiment is made here with pivots 12 times efs in diameter than the roller, and fine pliable filk, inftead of ropes.

Of the Equuleus or Wooden Horfe of the Ancients; by Mr. John Ward. Phil. Tranf. N^{N} 412. p. 231. Tranfated from the Latin.

FOR what end the Equuleus or wooden horfe was firft inftituted, and to what ufe it was applied is pretty evident from feveral paffages in ancient authors. But fince none of them hath defcrib'd its figure and the manner of conftructing it ; learned men have run into various opinions and thofe widely differing from each other. Nor, indeed will this feem furprifing to any one who confiders, how difficult very often it is to determine ought with certainty about things that have been in difule forfeveral ages, and removed from our view; efpecially, if the ancient authors, who mention them, do it only flightly, and do nor fully defcribe them. This, as has been faid, was the cafe with the Equulleus, nor did any of the learned, who after the revival of literature undertook to defrribe this machine, feem to Mr. Ward to have done it with fuch fuccefe, as that their defeription agreed in every refpect with what the ancients deliver about it: So that he bad entirely laid afide all hopes of obtaining any greater certainty in this affair: But being favoured with the fight of fome papers fent Dr. Mead from Rome, in which were delineated feveral figures of an ancient work, ftill extant there; amongft others he happened to light upon one, drawn from a marble, in the Prince of Burgefis palace, which, as he conjectured, reprefented a man fufpended on the Equuleus: And upon more attentively confidering the matter and more carefully enquiring into the paflages in ancient authors, where mention is made of the Equuleus, and diligently comparing them with this figure; he plainly difcover'd not only the miftakes of modern writers on that head, but as he thought, the caufes of their miftakes; as fhall manifeftly appear from what he is to fay of this ancient machine.

Equuleus, therefore if we attend to the etymon of the word, fignifies a bor fe colt, or little borfe, as we find from the follow. ing words of Tully de nat. Deor. l. 2. C. 14. Cbrifippus ommia in perfectis $\xi^{\text {maturis docet effe meliora; ut in equo, quam in }}$ equuleo: And hence the machine we are treating of, firft took bo th its figure and name.

Some

Some have erroneoufly confounded the equuleus with the evux or crofs; but this latter was a kind of gibbet, to which llaves and others of mean condition were affixed and punifhed with death ; but on the equuleus the torture was applied in order to extort confeffion: Thus Valerius Maximus, lib. 8. cap. 4 makes mention of a certain flave, who, tho' tortur'd fix times on the equuleus, denied the fact, and yet was afterwards condemn'd by the judges, and crucified: The equuleus, therefore, either as to form or ufe, did not agree with the crofs.

But amongt the various npinions, Mr. Ward felects only two, as coming neareft the truth. The one, that of Hie ronymus magius de Equul. c. r. (whom Gallonius de S. S. Martyruns cruciat. cap. 3 . follows) who rightly judged it to have been made in the gape of a borfe. The other, that of Caracciolus, apud Ferrar. Elect. l. 1. C. 5. who, no lefs rightly, judged it to have been an erect ßake. [Now Mr. Ward endeavours to fhew, that both were miftaken (not to mention other errofs) in imagining that there quuleus was always of the fame form.
In the more early times the equuleus was in fome meafure made like a horfe, with its back flatted and of fuch length and breadth, as that a man's body might be conveniently extended thereon: And he who was to be tortur'd, did not fit, but lay on his back with his arms writhed back under the equuleus's breaft, his hands bound and feet extended: The equuleus was provided with two pullies of different fizes; the leffer placed between the buttocks, made hollow to receive it; and the larger, with a bandle to it, under the belly. The executioner after tying both feet with cords (call'd fidicule) paffed the cords over the leffer pully, and faften'd them to the larger one; which laft as he rumed round with the handle, he could ftretch the body, till all the joints were loofened, and that with the moft exquifite pain.

In the next place Mr. Ward produces the teftimonies of ancient authors, that may confirm this defcription. The very naine (as has been oblerv'd above) feems pretty plainly to flew that the equuleus was shap'd like a horte; as there is at this day among us, fuch another fort of machine for miFirary punithments calld the wooden bor $f e$: And the fame thing is manifeft from thote modes of fpeech, borrow'd from the horfe and applied to the equuleus: Thus in Cicero Tufc. Quaft l. 5. c. 5. we read not only conjici, \mathcal{G} imponi, but likewile ire in equuleum. And hence Pomponius's jeft in the Atellanic veries, Apud. Non. in voc, tolutim,

At ubi influi in cocbleatum equuleum; Ibi tolutim tortor.

Where the poet has evidently borrow'd the words infilui and colutimi from horfmanfhip: Befides, when he fays cocbleatum, which Mr. Ward would rather read trocbleatum equuleum, he Shews that it was provided with fcrews or pullies. And Serreca informs us that men were wont to lie along upon the equaleus, when he fays Epift. 66 . Hoc nobis perfudere conaris, nibil interefle, utrum aliquis in gaudio Sit, an in equuleo jaceat. And that the body was ftretch'd with fmall cords, Fabius Declam. Ig. teftifies, where a father accus'd for torturing his fon to death, Speaks thus: An tu'queftionem illam fuiffe credis, qualis vernilibus corporibus adbibetur? ideo enim equuleum moveban artifex Senex, tendobam fidiculas ratione Savitice, ut leniter fedibus fuis emota confago per fingulos artus menbra luxaret. Whence alfo Seneca fays Epift. 67. bominem feri longiorem in equuleo: And as for that reafon the hands and feet mult needs have been tied down; fo it thall be fhewn anon, that that was done, in the manner, already mentioned. What is faid of Zeno the philofopher, Val. Max. l. 3. C. 3. Seems to agree very well with this defcription of the equuleus. Is enins cum a Nearcto tranno torqueretur, doloris victor, fed ultionis cupidus, effe dixit quod eum Secreto audire admodum expediret; laxatoque equuleo, poftquan infidiis opportunum tempus animadvortit, auremejus mor u corripuit, nec ante dimifot, quam se iple vitâ, \&'ille corporis parte privaretur. Now a man, lying upon the equuleus, as has been explain'd above, was at fuch a diftance from the ground, that one might conveniently enough apply his ear to the other's mouth; and confequently, when the executioner flacken'd the cords, by gathering up his feet a little and bending his head, he might eafily lay hold of his ear with his teeth.

It moreover feems probable, that the brazen bull, which Perillus made, and prefented to Spalaris, tonk its rife from hence. For, Plutarch Paralb. c. 39. and LFilian Var.bifl. 1. 2. c. 4. teftify that men were wont $5 \rho \xi \beta \lambda \varepsilon \sigma \sim \sigma_{6}$ by that cruel tyrant ; by which word as Flian himfelf elfewhere, apud Suid. in voce $5 \rho \equiv \beta \lambda=\mu \varepsilon v o s$ fhews he meant equulei extenfionent. And thus in 'Pbiloxenus's Gloffary speßawtns. fignifies equuleus. when, therefore, Perillus that ingenious artift at mifchief, had oblerv'd that perfons, tortur'd on the equuleus, did by their groans and cries make a nnife, not unlike the bellowing of a bull ; it may not feem abfurd, that in order to make the reVol. IX. 1

MEMOIRS of the

femblance as near as poffible, he firf bethought himfelf of changing the figure of the horfe into that of a bull, and of fhutting men up therein.

The equulous as had been faid, had not always the form of a horfe; but in latter ages was changed into a quite different one ; but tho' it changed it's figure, it ftill retain'd the name, a thing not uncommon: For, not to mention other inftances, that warlike engine, which from its refemblance, to a ram's head, was call'd Aries, had not always the form, from which it originally took its name. Vide Lipf. Poliorcet lib. 3. dial. r.

The equuleus, therefore, in thefe days was an erect ftake, a top of which lay a crofs piece of timber, incurvated at both ends like horns; and provided as the former, with two pullies; the leffer of which was fixt into the lower part of the ftake, made hollow to receive it; the larger had a handle to it, and was faften'd behind: The perfon to be tortur'd, being rais'd upon the equuleus, hung with his arms bent back on the crofs piece of timber, and with his hands bound behind him to the ftake; his feet were alfo tied with cords, which, paffing over the leffer pully, were received into the larger one fixt to the back part of the equuleus by turning of which round, the body was ftretch'd.

And fince ecclefiaftical writers, who give an account of the exquifite tortures of the martyrs under the Roman emperors, make frequent mention of this fort of equuleus; their teltimenies are of efpecial ufe in proving its figure.

Amonglt others S. Ferom Eipift. ad Innoc. 49. calls it Stiper

Fubet amoveri noxialem fipitem.
And that it was in an erect pofition appears hence, that the patients were faid fupendi \& pendere in illo; as fhall be lhewn anon from Eufebius and Prudentius.
Mr. Ward finds no mention made in ancient authors of the: crofs piece of timber; and this we may reatonably fuppofe, gave occafion to the teveral errors of the learned in defcribing this machine. But in the figg to be defcribed anon, that piece of timber, incurvated like a pair of horns, is plainly to be feen. And that it was likewife provided with pullies, may be gather'd from the following words of Eufebius, Hijt. Ec. clef.l. 8. c. ro. Quidam, manibus poft tergum revinctis, ad fitipitem fufpendebantur, ac membrum unum quodque $\mu . \alpha 2$ zavous quibufdam difendebantur. Where the term paqzavoos (ufed in the plural number) and which agrees almoft to any machine

Royal Society:

provided with ropes and a handle, feems to fignify pullies: And as Eufebius informs us that their hands were tied behind; to Prudentius ubi supra bymn. 5: v. 109. that their arms were turned back, when he brings in the judge paffing rentence in the following words.

> Vincturis retortis brachiis Surfuns ac deorfum extendite, Compago donec offium Divulifa menbratim crepet.

That the feet were likewife wont to be tied, appears from the fame poet, ibid bymn. 10.v. 49 r. where the martyr fpeaks thus from the equuleus.

Miferums putatis quod retortis pendeo Extentus ulnis, quod revelluntur pedes.

But in order to pull back the feet, they muft firft be tied down: And from both writers it appears, that it was an erect ftake. And hence the judge orders the body to be ftretch'd up and down at the fame time: For, in this pofition of the body, by pulling back the feet the inferior parts would be ftretch'd downwards; and the fhoulders, fupported by the crofs piece of timber, and reprefs'd by tying his hands to the ftake, muft neceffarily be puifh'd upwards and luxated. And becaufe they hung aloft from the ground, hence the judge (vide Sozomenus. Hijt. Ecclef: 1. 5. c. 2.) orders a Chriftian deapeı raifed or hoifted aloft on the equuleus: Nay, that the punifhment|might be the more confpicuous according to Ferrarius Elect. 1. 1. c. 6 . the equulei were placed upon the Catafta; of which, he obferves, may be underftood the words of the martyr; ubi Supra bymn. 10. v. 467.

Enitto wocem decatafta celfior.

To which Mr. Ward thinks may be added, the following evords in v. 108 . of the fame hymn.

Incenfus bis Afclepiades juferat
Evifcerandum corpus equuleo bminus
Pendere.

The Catafia is a wooden frame or fcaffold, anfwering to ous pillory. Ferrarius de judic. lib. 3. c. 17. therefore, thinks that Sigonius, and other leamed men, are miftaken in taking the catafta for the equuleus itfelf. And indeed, were not the equuleus placed upon a cataffa, how could the executioner with his iron ungule evifcerate the body hanging aloft thereon? And we learn from 'fufinian's Code L. 16 . de queft. that fmall cords were made ufe of equally in this form of the equuleus, as in the former; where by an edict of the emperor Valentinian it is enacted Decuriones exfortes omnino efe earums poenarum, quas fidicula © tormenta confituunt. For, it is very well known, that the ancients by thefe words (fidicule \mathcal{E} tormenta) frequently defcribe the equileus.

Now, if we confider a little more attentively the words and phrafes, made ufe of at different times in fpeaking of the equuleus, we muft needs acknowledge that they by no means agree to the fame form thereof. For, firft we may gather that its form was changed from the new name fuper-added to it, the term fitipes by no means agreeing to a machine, made in the shape of a horfe: Wherefore, we muft conclude, either that it never was in the fhape of a horfe, contrary to the certain meaning of the word equuleus, and modes of fpeech borrow'd from it; or thar, when it afterwards began to be called fipes, it had another form: Befides, men were faid in ancient times jacere; but afterwards pendere and fufpendi in equuleo; both which poftures of the body, fo widely different, require the form of the machine to be no lefs fo. Add to this, that different effects feem to be alcribed to the different forms. For, in the more an: cient times the body is fimply faid extendi, as being laid along; but in after ages it is ordered to be furfum \mathcal{E} deorfum, which agrees to a pendulous pofture. In fine, a man lying upon the former equulleus was at fuch a height, as that he could whifper another in the ear; but this can by no means agree to one hanging in the latter, by reafon of the too great diftance from the ground. So that this difference of words and phrafeology is neceffarily to be referred to two different kinds of equuleus: And thofe learned men, who have been of a differentopinion, whilft they endeavoured to accommodate to their own natiens the different phrafes ufed by the ancients on this matter, have been involved in difficulties from which they could by no means exgricate themfelves.

But to remove all manner of doubt for the furure, Mr. Ward priefly confiders two teftimonies? adduced by Gollonius de S. S. was fhewn to be in the form of a fake: One is from the folJowing words of S. Ferom, Epiff. ad Innocent, 49. cum equuleus corpus extenderet, छ์ manus poft tergum vincula cobiberent, oculis, quos tantum, tortor alligare non poterat, Sufpexit ad ceolum. From which paffage Gallonius contends, that the patient lay proftrate upon the equileus. But it is plain, that a man, hanging in the manner mentioned, might as eafily look up to heaven, as if he lay on his back. The other teftimony is from Ammianus Marcellinus 1. 26. c. ult. Innocentes tortoribus expofuit multos, vel fub equuleo cepit (or rather according to Valeffus caput) incurvos, aut ictu carnifcis torvi fubftravit, and elfewhere, 1 lib . 28. c. ¥. quanquam incurvus fib equulea flaret. Whence the fame learned man has invented a new and unheard of kind of torture ; as if the executioners, in order to heighten the pain, nackened the cords, and thereby fuffered the body to fall down under the belly of the equuleus, and there hang in an incurvated pofture. But Ammianus does not fay, fub equulè cecidiffe or pependife, but fetiffe; which how it can agree with Gallonius's opinion, Mr. Ward does not fee. But as it was cuftomary firft to feourge fuch as were to be tortur'd on the equuleus, 10 he probably uted the term (incurvus) becaufe the patient could not ftand upright under that punifiment; and fub equuleo fignifies, juxta equuloum; in the fame Tenfe as jub bafta venire Liv. 1. 5. c. 16 and the fame may be faid of the word (incurvos) in the other paflage of Ammianus. Unlefs one would rather take thefe words to mean thofe loaded with chains, and confequently incurvared or bent under their weight; as Paulinus Aquitanus de vit. B. Martini 1. 5. y. 26 I. writes in a like cale.

Moeftorum pallens infelix ordo reorum Hocrebat, nexis per fquallida colla catenis, Incutiens fractis ftridentia vincula membris, Et motans tardos, incurvo pectore, greflus.

Here the poet feems to take the words (incurvo pectore) in the fame fenfe, as Ammianus (caput incurvas.) And a few lines after he likewife fays, that fome of thefe unhappy wretches
were deftined to the equuleus. were deftined to the equuleus.

> At alii furfum porrecti yobora ligni, Trifte miniferium, furiofo corde parabant; Ut caro diflentis propere, male pendula, metwhisi Tortori laceros crusianda exponeret artus.

Where likewife the words (ursum porrecti robora lignis so caro pendula) plainly fhew the erect form of the equuleus.

Moreover, when a confeffion could not be extorted either by fcourging or extenfion of the limbs, in the more early ages they applied fire and glowing hot plates to the body. Thus Fabius Derlam. 7. reciting the whole affair in order; go fcindo vefes, iu intremifcis; ego ad flagella nudo corpus, te facit pallor exanimem: ego pofoo flammas; tu non babes in meo dolore patientiam. And Vaderius maximus 1.3. c. 3. rupit verbera, fidiculas laxavit, folvit equuleum, laminas extinxit; priufguam efficere potuit, ut tyransicidii focios indicaret. But in after ages, when the equuleus was in the form of a fipes; to all the fe methods of torture were alfo added the iron unguld or claws, with which the fides and other parts of the body were wont to be torn. Thus it is adjudged in the Codex \mathcal{F} ufin. 1.7. de malefic. Si convictus fuerit, Eo ad proprium facinus detegentibus repugnaverit pernegando, fit equuleo deditus, ungulifque fulcantibus latera perferat peenas proprio dignas facinore.

Yet Mr. Ward cannot pofitively affirm at what time this change of form in the equuleus began among the Romans That it retained the form of a horfe, at leaft to Fabius's time, that is, under the emperor Domitian, feems the more credible; becaufe the father, who, in Declam, fupra citat. pleading in his own defence for torturing his fon to death, defcribes him as in a lying pofture. And Mr. Ward thinks, a pretty probable reafon for the change may be given: For, in the latter ages of the Roman empire we often read, that not only Chriftians, but likewife other perfons of confiderable rank and dignity, accus'd of treafon, were condemned to the equulerts. But as long as it was only applied in extorting confeffions, nothing more was neceffary, than that the judges, and others concerned, fhould hear what was faid; for which purpofe the form of a horfe was a pretty convenient one: But afterwards when this machine was abus'd by cruel tyrants, to indulge their fufpicions and to toment Chriftians, an erect form, undoubtedly, was the moft proper. For, thus it in fome meafure refembled a crofs, that the ignominy of the pnnifhment might be the greater; and befides, the patient was more expos'd to the view of the beholders, in order to deter others.

It is true, that both the bull of Perillus, and the abovementioned hiftory of Zeno feem to fhew pretty evidently, that the figure of a horfe was in ute among the Greeks, from whom the Romans borrowed it.

But that the difference between thefe two machines may the more plainly appear, and that they may be the beiter compar'd together; Fig. 5. Plate I. reprefents the former equuleus and Fig. 6 . the latter. At the former ftands the executioner, holding the handle of the larger pully, in order to ftetch the patient laid along on the back of the equuleus. The latter, which was delineated from Dr. Mead's figure, reprefents three men; one of which hangs on the equuleus, the other two are executioners: One of thefe has a cblamys, (a garment S. Ferom ubi Jupra likewife gives the executioner) thrown behind from his left fhoulder, and with his right hand he takes hold of the right horn of the equuleus, as if he were to fet lomething to rights; the other, as affiftant to the former, naked, and on his knees, prepares himfelf to tie the feet of the patient. That the left horn of the equuleus is fhorter than the right, Mr. Ward thinks is owing to the injury of time; becaufe the extremity plainly appears to have been broken off. Either the artift or at leaft the defigner has omitted fome things; for, neither is the lower part of the fipes to be feen (where it ought to be) nor the lower pully; the other pully, as was obferved, being wont to be placed behind: But in this, either the one or the other has evi. dently been miftaken, in placing the man on the equuleus in fuch a manner, that he feems to touch the ground with his toes; which does not at all agree either to a pendulous pofture, or to the abovementioned teftimonies of the ancients on this matter. But we frequently find this to be the cafe in fuch ancient monuments, namely, that the artifts content themfelves with reprefenting very carefully the principal and effential parts, either entirely neglecting the others, or at leaft expreffing them lefs accurately. But to fupply that defect Mr. Ward has added Fig. 7. where the executioner turns the pully: The arch to the left has no concern with the equuleus; but exhibits a part of fome door, probably of the prifon, whence the parient was taken out.
Now if we compare together both thefe forms of the equuleus, and their feveral parts, we fhall eafily fee the fame method of torture under different forms: For if we fuppofe that the former, made in the thape of a horfe, was raifed alofi; the pullies, the ropes, the retorfion of the arms, and the extenfion

32

 MEMOIRS of theof the whole body will appear the fame as in the latter; and we Jhall have an eafy and expeditious method of torture; Q thing chiefly requifite in public puniflaments.

But left any one fhould flill imagine, that Mr. Ward has given an account of the furca, that is, a crofs , made like a furca, inftead of the equuleus; it is to be noted, that this form of the equuleus was not very unlike the furca; which is evident from the words of one Theopbilus, adduced by Gallonius, plainly againft his own opinion: Ecce, inquit, modo Cbriftianus fum, quia in cruce, id eft, in equuleo, Juspenfus, fum: Equtleus entm crucis quandam fimilitudinem gerit. vide de S. S. Martyr. cruciat. c. 3. and yet the furca differed from the equuleus in feveral relpeets: For, firt, the loweft part of the horns terminated in a point like the letter V; and then the: horns were much longer: Befides, the perfon on the furca hung, with his arms turned back above his head, and not behind his: back; in fine, his hands were not tied to the fitpes, bet extended on the horns and faftened thereto, as Lipfius de cruce 1. 3. c. 6. fhews. And yet the fame learned Gentleman ibid. 1. 1. c. 5. referrs to the crofs the words of Aufonius de Cupidine: torto, which, undoubtedly, ought to be referred to the equisleus. The paffage of Aujorius is as follows.

> Hujus in excelfo fufpenfum fipite amerem, Devintum pof terga manus, fulfrictaque flantis Vincula merentem, nullo moderawine pance Adfligunt. Jdyll. 6.

And when the poet 'fays here, devinctium poft terga manus, he plainly defcribes the equuleus not the crofs. Moreover when Sulpicius Severus, fpeaking of S. Mattin, fays that he affected the glory of a martyr fo much, that, if he might be allow'd he rould voluntarily mount up the equuleu's Epift. 2 And both the figure of the machine, and manner of fufpenfiot: evidently fhew how it could be done: But no fuch thing coule happeri on the furca.

Upon the whole then, fince the entire proof of this matter chiefly depends on the teftimonies of ancient writers, and aa Mr. Ward thought it fuperfluous to adduce any more, tho' vers numerous; fo he was of opinion that fewer would not be fuffil cient to explain it fully. But whatever accounts the ancient give us on this head, they may eafily be referred to one or othe: 1pecies above defribed. One; therefore, who atterids to the
afye of the author, the different modes of fpeaking ufed at different times, can, Mr. Ward thinks, find no difficulty for the future, what he ought to determine about this kind of torture ; in explaining which fo many learned men have hitherto pesplexed themfelves to no purpofe.
Meteorological and Afronomical Obfervations for the Tearis 1728, 1729, E®c. at Wittemberg ; by M. Weidler. Phil. Tranf. No 412. p. 250.

THE firft meteorological obfervation M.Weilder takes notice of is a remarkable halo round the moon, on Feb. 20.1728, at 45 minutes paft 7 in the evening; when the moon was not far diftant from the meridian, and about her firft quarter. The diameter of the halo pofieffed about 47 degrees, reaching from 6 in Procyon to Capella towards the weft. Its arch was 4 degrees and $\frac{T}{2}$ broad, as far, for inftance, as a and 6 in Procyon are from each other. In the infide it was red, and towards the extremity pale; exhibiting entire a beautiful Speitrum for about 4 minntes; but he did not know when it began. Be• fore it difpers'd, fome thin white clouds began to pafs over it tranfverfely, and then it was broke towards the weft, the rednefs of the difperfing vapours greatly increafing : After which the fky became clear again. The fame day at noon he obferved 13 fpots on the fun; the largeft being equal to $\frac{1}{3} 4$ of the fun's diameter; and the firit of wine fell to 90 degrees of the Englifh thermometer.
April 4. 1728, he obferved an aurora borealis.
fune 20. another, which is deffribed in the AEE. Liter. Ann. 1728. p. 375.
OEF. 7, a very remarkable one appeared in the N. E. a white arch, extended between the W. and N. E. quickly affumed a Jlack colour, and then divided into three other concentrical arches equally black. From thefe fome radiations arofe as fual, but fhorter: A little after thefe likewife ceas'd; and he black arches were converted into luminous tracks; only one emained till 11 o'clock: And whereas at firft the lowermoft rch was raifed 9 degrees above the horizon; it was now deoreffed towards it, being fcarcely two degrees above it.
He next gives i4 aftronomical oblervations; 10 of which are f the ecliptes of fupiter's faxellites, at different times. In naking thefe he was guided by Caflini's tables for the meridian faris, and by comparing the time when they thould hapen, as therein fpecified, with the time he oblerved them at
Vor. 1X. I

Wittemberg, he collects the difference of meridians of that city and $P_{\text {aris }}$ to be 4 m minutes.

The 8th. obfervation contains his calculus for the total eclipre of the moon, which happened $F e b .13 .1729$, N. S. but the heavens being very cloudy, he could not obferve the eclipfe itelf.

The 9 . is an obfervation of mercury, March 4, 1729; at which time the planet was fartheft from the fun, and comtinued fome rime above the horizon.
Making ufe, therefore, of $a=2$ foot telefcope, he obferved its phafis almoft biffected; and its diameter appeared equal to a third part of the diameter of Venus, this planet being above the horizon, and feen at the fame time.
The 1_{3}, is a conjunction of Venus and the moon, vizo April 2, 1729 . At $7^{\text {h }}{ }^{1}{ }_{3}{ }^{\prime}$ he obferved Venus placed in fuch a manner near the moon; that the horns of the latter were in the fame right line with Venus, which was then diftant from the fouthern cufp of the moon $1^{\circ} 10^{\prime}$. At $9^{h} 30^{\prime}$ he meafur'd! the diftance of. Venus from the eaftern cufp of the Pleiades to be $2^{\circ} 15^{\prime}$, and the horn of the moon at the fame time wasi diftant from the fame cufp $\mathbf{I}^{\circ} 53^{\prime}$, the intermediate diftance? of the horns of the moon was $29^{\prime} 30^{\prime \prime \prime}$.

His laft obfervation is on the declination of the magneticall needle ini this, viz. 1730, and the former year, which he defines to be $12^{\circ} 0^{\prime} 55^{\prime \prime}$ weft at Wittemberg at this time.

Thefe obfervations are followed by an account of the laft hard winter, which fet in fooner than ufual, the rivers being, frozen the 19. of Sept. the' they did not ufe to be fo till the winter folltice; and Sept. 21. the fpirit of wine fell in the Englifh thermometer to the 66 . degree; at which time a N. E. wind blew very ftrong. Afterwards on OCZ. 3. the fpi. rit fell to 72°, and the ice was half an inch thick on ftanding waters in the fields : So that even then it might be judged, that the cold would be more fevere than is ufualin thefe partss From this time the froft did not at all abate, but continued much in the fame ftate the month of Oftober, only on the 20. day, afier a S. W. wind had blow'd pretty hard for fomeo days, the cold was obferved to increafe remarkably. The beginning of November a ftrong E. wind continuing to bloww for fix days, the fipirit fell to the 86 . degree on the 5 . and tho 0 ice was much thicker. On the 28 . it fell to 96° after whicl they had no rain; but all vapours were congealed into iced and hoar-froff. On Dec. the 2 . the firit of wine ftood ar 96
but on the 4 , at 99° : So that it did not a little exceed the limit of intenfe cold. Hence a S. W. wind intervening now and then, the cold feemed to abate a little : But that, and formetimes a N. E. wind blowing ftronger on the 21, 22, 23. days, it fo prepared the air, that on Cbrifinals day the fipirit in the thermometer ftood at 96°, and the cold was intenfe. Hence the winter grew immediately more fevere. The wind almoft always blew from the E. or N. So that on fanuary 2c. the cold was almoft intolerable, on which day the firit fell to the 126°, very little remaining above the ball of the tube; and this was the greateft degree of cold at Wittemberg. A frer this the winter fomewhat abated. A fouth welt wind blew frefh fometimes; but afterwards a N . and E . wind reftored the cold on February 3. when the fpirit ftood again at 86 degrees: On the 4 . it fell to 95° and from this time, barring a few days, always in a morning it reciprocated between 80 and 100°, till March the 8. on which it exceeded 108°, and on the 9 . it was forced down by a N. E. wind to 110°. But tho' the fpring was at hand; yet the feverity of the weather did not ceafe; as appears in that the fpirit of wine in the Englifh thermometer, in a morning always ftood at, or under the 80°; nay even on March 21. on which day the equinox precifely fell, it was at 81°. At length on the latt day of March, the weather grew milder; from whence may be takeen the true beginning of the fpring; not but that all April was much colder than ufual.
After this the curious obferver proceeds to thew its feverity from fome of the moft remarkable effects the cold had on the rivers, plants and animals. As to the firt he fays that the Elbe, both at Wittemberg and other places, was on December 29 covered with a perfect bridge of ice, which bore both menand all forts of carriages, This continued till February 28, when it grew thinner, and broke confiderably: But the cold returning on March 8, it re-united, and was as firm as before, till March 29. The water within the houfes, and in the bed-chambers, where were kept good fires, was entirely congeal'd, and the rind on the infide of the windows ftuck for feveral days, when the wind was cither E. or N. tho' the room were well warm'd. There were feveral examples of the other kinds. Many perin'd in their journeys, and more loft their limbs in a very fhort time. So that near the Elbe they could not work abroad. It likewife kill'd feveral animals immediately. The crows, which can bear 12
intenfe
intenfe cold, fell dead from the trees: Stags, goats, and hares, perifh'd in great numbers. The plants in like manner felt its violence, and the more tender trees were damaged. The limes were every where injured. The larger branches of the plumb-trees, a pricocks and peaches, were dried up: But the vines fuffered moft; the more robuft being fhrivell'd to the very loweft part of their trunk, unlefs guarded by a wall or fome other covering.

From thefe obfervations M. Weidler compares this winter with the memorable one of 1709, and proves both from thermofcopical obfervations; from its effects on the earth and animals; from its longer continuance, and from the greater extent of the cold into the more fouthern parts, that this latter much exceeded the former, at leaft in Germany.

Laftly, he enquires into the probable caufes of it, he takes notice, that the preceeding winter was moderately cold and dry; and as a cold fummer fucceeded, and alike dry, ir which the north winds blew moft frequently, and during theo hotteft months of fuly and Auguft the nky was covered witth dark and black clouds, the earth was prepared for froft, to which the remarkable drinefs of the feafon did not contributee a little, as barometrical experiments thew, that a dry air cools fooner than a moift; and is both heavier and retains cold longer: Nor does he think it altogether foreign to truth; too reckon the remarkable frequency of the aurora borealis to bee a prefage of a colder winter than ordinary, which has been obferv'd to be followed by cool and ferene weather: As alfo the unufual number and largenefs of the fots on the funt difk, for almoft two years together: By which means, in fuch a length of time, the force of its rays might be obftructed it fome meafure, and the colder winds thereby have liberty too prevail. The air by thefe concurrent caufes being rendered very cold, the increafe and extreme degree of it proceeded from the great coldnefs of the ky , and the blowing of the N. E. or E. wind fo remarkably obfervable for the moft part of the froit.

An Occultation of Venus by the Moon at Berlin Septemiber 19. p. m. N. S. by M. Kirch. Phil. Trani. No. $412=$ p. 256. Tranflated from the Latin.

THE approach of the moon to Venus happened at $2^{\text {h }} 2^{\prime} 16^{\prime \prime}$. The total occultation was at $2^{\text {h }} 3^{\prime} 1^{\prime \prime \prime}$ With an eighteen foot telefcope M. Kirch obferv'd that ans
foon as Venus, placed almoft in quadrature, approach'd the moon's difk, fhe changed her figure, and loft her horne, and put on an oval or elliptic figure; which appearance M. Kirch thinks may ferve to prove an atmofphere about the moon.

A large Stone in the Urethra; by Dr. Huxham. Phil. Tranf. $\mathrm{N}^{\circ} \mathrm{4I}^{2}$. p. 257. Tranflated from the Latin.
T WENTY years before one Cookworthy had his Penis cut off on a venereal account, but the cure was ill performed; for, after cicatrifing, there was fcarce any pafage left for the urine, the uretbra being almoft clofed up: From that time the patient made water in a very fmall ftream, and with the ftrongeft efforts, and foon felt exquifie pain in making it; not long after, there appear'd a fmall sumour on the middle, but upper part of the frotum, which gradually increafing, at length grew to a prodigious fize, inclining to the left groin; on which account being altogether uncapable of making water, it caufed a continual drizzling: But ${ }^{2}$ yet he did not difcharge the whole this way, the greateft part of it being voided by three or four ffeulee in the fcrotum, together with purulent matter at times: And yet the tumour now grown very hard, was fo far from decrealing, that it rather became bigger.

This patient was brought into the hofpital, and fome time after, ftraining to make water, which, he faid, felt horter than ordinary, and doubling his body very much, he voided a large fone, which, at the time, weigh'd five ounces and a half Avoirdupois. The lacerated fcrotum, whofe fwelling now fubfided, could eafily admit a child's hand; and the Dr.found that the ftone had paffed out of the uretbra, and what is perhaps, no lefs furprifing, is that this large wound was foon healed, by only anointing it with fome terebinthin balfam, fave that there was a fmall fiftula for the urine on the upper part of the fcrotum: And the patient, who before could hardly ftir, now walk'd about pretty well.

The Dr. is far from thinking, that this ftone was originally formed in the uretbra; but rather increafed there from a concretion of gravelly matter: For, probably, a fmall calculus, the feed, as it were, of this huge ftone, falling down from the kidneys, and from the floppage of the uretbra, denied any farther paffage, ftopt in this finall canal, and increafing by
the continual acceflion of gravel, at length grew to that predigious fize.
An Account of the Imperial Salt-works of Sóowár in Upper Hungary; by Dr. Bruckman. Phil. Tranf. No ${ }^{\circ}{ }^{1} 3$. p. 260.

Sóorár is an Hungarian word (which in High Dutch $\mathrm{N}_{\text {fignifies Salt-burg) compounded of } S \mathrm{~S}_{\mathrm{t}} \text { i. e. falt, and } W a \text {, }}$ which fignifies burg or town. It is a large village, about a quarter of a mile from Eiper, a city of the county of Sáar, entirely peopled with officers of the excife, and miners, or wood-cutters; and fituated on the top of a little hill, with an agreeable profpect.

Ffuly 16, 1724, we came from Rofenawe to Sóowár, with Dr. Poëkin, in order to view this celebrated falt-work, which furnifhes the fineft and pureft falt of the whole kingdom. Waving communicated our intention to an officer of the falt works, and afk'd his leave to go into the Cuts, he gave us two guards for guides. We firft went down with them into the well by a rope, feated on leathert dogs (as they call them) about 40 fathom deep; after which we again defcended 100 fathom, by holding ourfelves perpendicularly againft the walls and fides of the pits; and having again continued our journey under ground in the falt-work, we then found ourfelves in the Cuts, and faw all the Allies, cut out in the fineft rock-falt; in the midit of which there were here and there fome veins of fint of a dark grey colour. The miners work to cut this rock-falt, which they draw up by a rope, and put into a redervoir, where they cleanfe it with lalt-water. Afterwards they boil it with the fame water, till it become of the confiftence of cryftal; and then they put it into veffels, which contain a bout 268 lb each; and then fend it into Silefia and orher countries.

As to the vegetable or foffll falt, it is exceeding white and tranfparent, fand in fuch plenty in the falt-works of the county of ATarmer near Tranjyluania; where there are entire large mountains of it, that from them one might furnifh the whole world with falt; and again as you cut it, it foon grows anew: They break and cat it; and tho' at firft it appear black, yet in pounding, it becomes exceeding white; and fo it is with that which they ufe in Hungary, for, they export all the falt of Soowoar into foreign parts. There is fcarce an inn where you do not find two ftones like thofe made

Royal Society.

 ufe of in making muftard, between which they pound and break that fort of rock-falt: And in their ftables one likewife finds large pieces of that mineral, for the cattle to lick at pleafure.But to return to the falt of Sóowar: In the cuts one fometimes finds allies of rock-falt of the moft delicate blue and yellow colours. We obferv'd that the falt of the former colour, being expos'd to the fun for fome days, entirely loft all that beautiful ultra-marine, and became white like the other rock-falt; which did not happen to the yellow, it ftill retaining its colour: But when both are pounded together, the falt is neither blue nor yellow, but produces a falt exceeding white.

Meliffantes in his new geography, p. 428. Tpeaking of the fale-works the Spaniards have in Catalonia, affirms, that there is rock-falt, whofe colour is diverffied in fuch a manner, that it yields all the rainbow colours, of green, red, yellow, and blue; but that by firft preparing, and then grinding it, it became white. The fame thing likewife happened to the red rock-falt of Salisburg, which being pounded becomes white.
There is one thing very remarkable in this mine, namely, a chapel, which may eafily contain 100 people, cut in the rock-falt, with an altar, pulpit, facrifty, chairs and forms cus in the fame rock.

In this chapel they celebrate divine fervice once every year, the week after Epiphany: A Jefuit of Eper always preaches the fermon. This fervice was founded for the officers of the excife and the miners.

In thefe cuts there are four fountains of falt water, which they put into buckets, made of buffalo's fkins, fewed together, and draw it up by an engine, work'd by horfes, and convey it by pipes intöthe boilers, where they put the rockfalt to diffolve, which they afterwards boil, till it become like cryftal. By exprefs mandates of the Emperor no one may fell that foffile falt, nor may the Hungarians employ it for their own ufe, much lefs drive any trade with it; but they boil it all and export it into foreign countries.

They likewife find here a fort of cryftalliz'd falt, like the cruft fticking to the pipes of wood: The miners call it falt of cryftal; it is very white and tranfparent; but it appear'd to us nothing other than falt, falling drop by drop in its paf-

MEMOIRS of the

fage thro the pipes, and fo cryftallizing; and this they likewife eafily feparate.
But that which is moft curious and remarkable in thefe fubterraneous foffes, are the flowers of falt which grow like the beard of a goat; only with this difference, that thefe here are much whiter and finer. One cannot fufficiently admire thefe vegetables; yet one cannot find them in all the cuts, nor at all times; but they appear, and grow according to the temperature of the feafons, which in thofe parts are very wholefome, and without any thing noxious. Thefe plumes of falt are very brittle; they alfo melt in moift places, and diffolve into a volatile oil; but yet they are the pureft, fineft, whiteft, moft acid, and moft beautiful falt: So that it is not without reafon they have given it the name of the flower of falt.
The falt of Soowar is reckoned the beft of all Hungary; the greateft part of it they export into Silefia, Moravia and Bobemia; and the Hungarians dare not ufe any of it themfelves, under pain of banifhment. They make every year about 50,000 ton; every ton containing 268 lb ; but by an ordinance of his Imperial Majefty they are to boil about 100,000 ton, which they are to export as the other. Martin Zeiler, in his defcription of the Kingdom of Hungary p. 119 : makes but light mention of thefe rich falt-works.

In fine, we faw at Neulol, at M. De Nefzern's, receiver of the Emperor's rents, a flatue of rock-falt, as large as the life, which ferves as the barometer of Neufol: For, when it begins to fweat, or grow moift, it prefages rain, or wet weather; but when it is dry, you may certainly promife yourfelffettled fair.

After having employ'd three hours in viewing thefe faltworks; we aicended again by the upper opening, by a commons rope, and return'd to Eper, where we were civilly entertain'd by M. Topprever, one of the moft knowing men in all Hungary, Rector of the Lutberan Academy, and who underftands and Speaks 10 languages in perfection.
The Natural Hifory of Cochineal; by Melchior de la Ruufchor. Phil. Tranf. N ${ }^{\circ}$ 43, p. 264.

ADifpute arifing between Melchior de la Ruufcher and a friend of his corcerning the lubftance of cochineal; the one maintaining it to be a frall animal; and the other the
fuit or grain of a plant: The former procur'd from Antiquera in New Spain (the place where there is the greateft traffic for it) the atteftations upon oath of eight perfons, who have been immediately employ'd in propagating and managing it for many years: Whence the whole natural hiftory of this drug is collected. Thefe atteftations fhew,

1. As to cochineal itfelf, that they are fmall animals, with a beak, eyes, feet and claws; that they creep, climb, feek their food, and bring forth young without changing their fpecies, as filk-worms do; but producing their like; which are no larger than nits, or fmall mites, or the point of a needle; but when come to maturity, refemble, both in fize and figure, a dogs's tick. This far is certain; but their manner of generating is doubtful; tho' it be commonly belier'd by thofe who cultivate them, that they are impregnated by a fmall butter-fly, which is bred upon the Nopal (the plant they live upon) which paffes and repaffes over them.
2. As to the manner of raifing, nourilhing and managing them; it appears, that at the proper feafon, namely after winter (when thefe little animals can bear the open air) when the cochineals, which they have kept in their houfes, are grown fo large as to produce young ones foon ; they put 12 or 14 together into a paftle, or little neft, made of fine foft hay, or ftraw, or mofs of trees, or the down which immediately envelopes the cocoa-nut. Thefe paftles are then placed upon the plants of the Nopal, or prickly Indian fig (which they take care to cultivate well for this purpofe) and in 2,3 , or 4 days, thefe animals bring forth a great many young ones; foon after which, the dams die. In the mean while the young ones, coming out of the nefts, climb up the Nopal, fix themfelves to it, and fuck its juice, which is their only nourithment, but they do not eat the plant; and for this reafon they always feek thefe parts of it that are greeneft, and fulleft of juice, taking care at the fame time to place themfelves on the parts, moft fheltered from the wind and weather. During this time, whilft they are growing up, and become pregnant, great care is taken that no vermin incommode or kill them, as alfo to keep them clean, and difengage them from cerrain threads, like cob-webs, that grow upon the Nopal, as likewife to defend them from too much heat, or cold, and from the rain or winds; becaufe the fine cochineals are very tender: Neverthelefs the wild cochineals

MEMOIRS of ibe

ftand all thefe inconveniences; but then they are fo gritty, of fo ill a fimell, and of fuch little value, that they ought not to be mixt with the fine.
3. Asto gathering the cochineal : The firf is of the dams, which, having brought forth their young, died in the nefts. Three or four months after this, as the feafon permits, when the firft young ones are beconie fufficiently large, and are in a ftate to bring forth young ones in their turn, and have alfo produced fome few; the Indians carefully gather them of the Nopal with a fmall ftick, to which they fix a little hair in the nature of a pencil. Thefe animals being collected in this manner, and afterwards kill'd by hot water or fire, are call'd the fecond gathering, or rather the firft of the young ones, that have been nourifh'd and rais'd in the open air. Three or four months after this, they gather the fecond brood of thofe that have been brought forth upon the Nopal, which being grown big, have already brought forth fome young ones. This they do much in the fame manner as before, only now they take off the plant a great many young ones with their dams, which makes this fort of cochineal to be call'd gronilla, from the number of fmall ones found therein. In the mean time they keep a number of thefe young ones alive upon the Nopals, which they pluck up or cut, and lock up in their houfes, in order to nourifh them during the rainy feafon. Laftly, thefe being grownlarge, they put them into the pafles, and proceed in the manner above expreffed in the fecond article. So that for the moft part they make three gatherings in a year.
4. As to the manner of killing the coshineal: This is commonly done two ways, either in hot water, or in Tamafcales, which are little ovens niade for that purpofe; tho' there be fome people that kill them by roafting them upon comales, which are flat floves with fire under them, made ufe of by the Indian women to bake their maiz bread. Thefe three different methods give the cochineal three different colours. The firft renders them of a brown red; the hot water making them lofe the white colour, with which they are covered when alive. The fecond makes them of an ath colour, and marbled or jafpered; both on account of the natural white with which they are covered, and the red and tranfparent colour of the cochineal ittelf. The third fort becomes black, as if it had been burnt. Of the old ones which died after dropping their young, four pounds, when dried, produce but che;

Royal Soctetro.

one; or rather one pound is reduced to four ounces: But three pounds only of the living, which have been carefully taken off the Nopals, being kill'd and dried, produce as much.

This is the fubftance of the atteftations, $\xi^{3} c$. which contain feveral circumftances hitherto unknown, both in M. Ruufcher's country (Holland) and elfewhere: And as the curious may now be affur'd of a thing, which has been very uncertain for fo many years; and indeed known but very fuperficially, even by thofe who have embraced the opinion, that the cochineal were really little animals; and as there may be always a ftanding evidence to evince the truth of thefe facts, the original arteftations, confirmed by the certificates of three magiftrates and three publick notaries, are depofited among the regifters of the Royal Society.

An Anatomical Defcription of Worms; found in the Kidneys of Wolves; by M. Klein. Phil. Tranf. No 413. p. 2690

THEworms were fent M. Klein from Serwaldia in Eaft
$\mathscr{P r u f f a}$.
Fig. 1. Plate II. reprefents a female worm found in the kidney of a the-wolf.

Fig. 2. The kidney of the wolf, refembling a bag, on account of the alinof entire confumption of its parenchyma. It contain'd eight worms; fome of a yellowifh; others of a blood-colour; two of which were females; and fix males.

The females were more than twice longer and thicker than the males: They were furnif'd with three very vifible holes; the firft of which performed the function of the mouth; the fecond of the anus; the third of the vulva. This laft hole is feen under the belly at $a b c$ Fig. 3 . about one inch and $\frac{x}{2}$ from the mouth.

The membranous fkin was marked with annular fibres, and feven or eight chefnut-colour'd lines, as at d, running the whole length of the worm. The flin being cut, a limpid humour iffud forth, and then appeared the tranfverfe fibres, interlaid on every fide with the vi/cera, and inferted all round about into the fkin in the interftices of the veficles (of which hereafter) and at the fame time the vi/cera appear'd, which the parts, deftin'd for nutrition and generation, feem folely to make up.

MEMOIRS of the

The alimentary paffage is compos'd of two canals, one of which $b b$ (Fig. 4.) that begins at the mouth, and is about two inches long, fmooth, flefhy, whitifh, and endow'd with thick coats, ferves for receiving the nourilhment. As this duct, proceeds with equal thicknefs, it is once reflected and retorted before it enters the other $c c c d$ which is of a dark brown colour, much broader and tenderer than the firft, flatted, membranous, cover'd with very fine coats, wrinkled like a fwathing cloth, then runs into tranfverfe and winding finews, and extends in a freight line to the anus. The inner coat of this canal feemed rough and ftrew'd with duft, as it were. The liquor contain'd therein was perfectly fluid, and of a faint, footy colour.

Near the anus was fix'd to the fkin the end of a whitifh, tender veffel, which from thence proceeded ftraight to the beginning of the alimentary canal, where reflecting towards its origin, and again refuming its firft way, after being contorted and implicated in many and various windings and curves, widens and ftreightens here and there, till at length becoming more and more capacious, it forms a little bag, for which a whitifh, fine, fmooth, canal, about an inch long, covered with pretty thick coats, piercing thro the fkin, an inch and a half from the mouth, prepares an outlet, mark'd under the belly with a caruncle, as at c Fig. $3: b$ Fig. 4, 5. This little canal may, not improperly, be call'd the oviduct on vagina.

The colour of thefe parts is not every where the fame: for, from a whitifh colour at the beginning, in its progrefs it infenfibly becomes darker: And at length, where the veffe acquires a greater volume, and efpecially where it ftretches forth into the bag, it is of a chefnut colour : And as far as thie chefnut colour continues, the veffel is thick ftuff'd with miriads of ova; and therefore may be call'd the ovarium,

The ova, whofe number is incredible, feen with thee naked eye, refemble a magna of a brown colour; but view'd thro' thofe microfcopes, which in the Englifh apparatus aree mark'd 2 and 3 , they are of the figure reprefented at a and b Fig. 6.
The furface of the inner ikin, which inclos'd the abdominall contents, was all befet with fmall whitilh bladders, of diffe rent figures and fizes, which upon tearing, poured out a3 bympla. Thefe were in the females.

Tho' the integument of the male throughout its whole length be markt with annular fibres, and as many chefnut-colour'd lines, as that of the female; yet his external fhape differs from that of the female. I. Becaufe as has been already faid, he is. much lefs. 2. Becaufe the third hole, viz. that under the belly, is wanting in the male. 3. Becaufe the anus of the male is furrounded with a thick cartilaginous membrane, nearly of an orbicular figure, about a line broad, externally convex internally concave; on the middle of which appears a tubercle divided by a fine flit, which lets out the feces, and a very fmal capillary procefs k.
The cavity of the belly (Fig. 7.) contain'd a limpid humour, tranfverfe fibres, alimentary canals, and fpermatic veffels.
The alimentary paffages had the fame fituation and ftructure, as in the female; the anterior canal was of a whitifh colour the pofterior or wrinkled one, of a pale brown.
The fpermatic veffels were very white and flender, yielding when wounded, a milky humour; they are divided into two fmall branches, hanging out of a vermicular procefs (fcarce an inch long) which lies in the belly, in that place where the alimentary canals are joined together, and leans on the fide of the wrinkled canal, by means of the tranfverfe fibres. Thefe branches, in their progrefs hence, creeping above and below the alimentary canal, are very often reflected, intorted and folded : One at length freed from its windings, ftretches a way ftraight owards the anus, into which it is inferted in the mape of a oretty ftiff veffel; but the other, at the fide of the wrinkled :anal, being prefs'd, collected, and equally inflected, almoft hro' its whole extent, by the tranfverfe fibres, terminates in the ppofite fide by an extremity, pendulous in the belly, not far fom the anus.
The inner coat of the fkin, juft as in the females, is all coer'd with fmall whitifh bladders, turgid with lympha, but lefs n proportion to the leffer fize of the worm.
Under the wrinkled canal M. Klein found a certain whitifh luct, markt with the letters b, b, b (Fig. 8.) firmly connected vith the aforefaid inteftine by its finelt part; but whofe ourlet, r origin, the tendernefs of the inteftine, and the finenefs of the luct, hindered us from tracing with exactnefs.
The following figures reprefent the worms, drawn as big as he life.

Fig.

MEMOIRS of the

Fig, 3. reprefents a female worm; a the mouth of the worm; b the anus; c the vulva; d the chefnut-solour'd lines, running aiong the worm's length.
Fig. 4. a the worm's mouth; b the alimentary tube; which is white, carnous, $\mathcal{S}^{\circ} c . c$ the alimentary, tube, which is brown and flatted, and whofe extremity is in the anus; d the place where both join; e, e, e, the tranfverfe fibres; f the anus.
Fig. $5,6 . a$ the worm's mouth; b, b the firf alimentary tube; c, c the fecond; d the place where both thefe are connected; e, e, e, the tranfverfe fibres; f, f, f the white veficles turgid with lympha, with which all the inner fkin is thick befet; g the anus; b the vagina; s the oviduCt; i the outlet of the vagina, or the vulve; k, k the ovarium filled with a vaft many ova, l, l the vala preparantia.
Fig. 7. the ova, view'd thro' a microfcope; a thro' the microfcope $\mathrm{N}^{\circ}{ }_{3} .6$ thro' the microfonpe $\mathrm{N}^{\circ} 2$.

Fig. 8. reprefents a male worm; a the mouth of the worm; b, b the whitilh alimentary tube; c, c the wrinkled alimentary tube ; d the yermiculiar procefs of the fpermatic veffels ; e, e a branch of the fpermatic veffels, along the fide of the inteftine, compreffed by the tranfverfe fibres, and inflected in an uniform manner thro' its whole extent ; f, f, f the windings and turnings of the fpermatic veffels; g, g the tranfverfe fibres; b the cartilaginous membrane furrounding the anus; i the fmall nit in its middle; k the very fine capillary procefs; m, m the fmall bladders covering the fkin.

Fig. 9. reprefents a male worm inverted and difected about the anus, in order to fee with cafe the duct lying under the alimentary tube; a the wrinkled alimentary tube; b the whitifh duct under the wrinkled tube; c the fpermatic veffels.

Fig. rc. a the vermicular prucefs of the fpermatic veffels ; $\theta_{\text {, }}$, b the branches of the fipermatic veffels, freed from their windings; c, c the fame branches diffected.
Objervations in Diffecting an Oftrich; by Mr. Ranby. Phil. Trani. $\mathrm{N}^{\circ}{ }_{41} \mathrm{I}_{3}$ - p. 275.

MR. Ranby adds two or three obfervations, that efcaped his notice in diffecting the oftrich he gave an account of in Pbill. Tran's. No ${ }^{\circ} 86$. p. 223 .

And firlt as to the eye; its figure, when taken out of the orbit, he takes to be particular, being almoft triangular, with fome little variation in the bony fofles. The contents of the

Royal Sóciety.

 (without very great alteration) of paffing the lower orifice, which is very fmall.The diameter of the duodenum is much fmaller than any of the inteftines and free from valves, as are the jejunum and ileum; excepting the latter, which has a few valves, as it approaches near the colon. The colon was uneven, with very regular cells; thefe cells were formed by valves, which were on the infide, and tranfiverfely fituated, each making more than half a circle.

The parts in other refpects agree with the defcription given by the feveral curious Gentlemen, who have diffected this animal.

A new Kind of Hydrometer ; by Mr. Clarke. Phil. Tranf, $\mathrm{N}^{\circ} \mathrm{HI}_{3}$. p. 27%.
HE hydrometer, by fome called areometer, is an inftrument, commonly made of glafs, confifting of a ftem A B (Fig. II. Plate II.) graduated by fmall heads of glafs of different colours, ftuck on the outfide; a larger ball B, quite empty, as well as the ftem; and a fimall ball C, fill'd with quick filver, before the end A was hermetically feal'd, in fuch a manner as to make the hydrometer fink in rain-water as deep as m, the middle of the ftem. Such an inftrument does, it is true, fhew the different fpecific gravity of all waters, or wines, by finking deeper in the lighter, and emerging more out of the heavier liquors: But as it is difficult to have the ftem ofacly of the fame bignefs all the way'; and tho' it could be had, the fame inftrument could not ferve for water and fpirits, finking quite over head in fpirits, when made for water ; and emerging in water with part of the great ball out, when made for fpirits. The hydrometer has only been ufed to find, whether any one liquor be fpecifically heavier than another, but not to tell how much, which cannot be done without a great deal of trouble, even with a nice inftrument. The hydroftatical balance has fupplied the place of the hydrometer, and fhews the different fpecific gravity of fluids to a very great exactnefs. But as that balance cannot well be carried in the pocket, and much lefs managed and underfood by perfons not ufed to experiments, Mr. Clarke was refolved to perfect the hydrometer, for the ufe of thofe that deal in fpirits; that by the afe of the inftrument they may, by infpection, and without trouble, know whether a fpirituous liquor be proof, above proof, or under proof; and exactly how much above or ungler. And this muft be of great

MEMOIRS of the

wife to the officers of the cuftoms, who examine imported or exported liquors.

After having made feveral fruitlefs trials with ivory; becaufe it imbibes fpirituous liquors, and thereby alters its gravity, he at laft made a copper hydrometer, with a brafs-wire of about $\frac{x}{4}$ of an inch thick going thro', and foldered into the hollow copper ball, B6. Fig. I2. The upper ball of this wire is filed flat on one fide for the ftem of the hydrometer, with a mark at m, to which it finks exactly in proof-fpirits. There are two other marks A and B, at top and bottom of the ftem, to fhew whether the liquor be $\frac{1}{10}$ above proof (as when it finks to A) or $\frac{x}{1}$ o under proof (as when it emerges to B) when a brafs weight, fuch as C, has been fcrew'd on to the bottom at c. There are a great many fuch weights of different fizes, and markt to be ferew'd on, inftead of ${ }^{\circ} \mathrm{C}$, for liquors that differ more than $\frac{3}{10}$ from proof; fo as to ferve for the fecific gravities in all fuch proportions, as relate to the mixture of firituous liquors, in all the variety made ufe of in trade. There are alfo other balls for fhewing the fpecific gravities quite to common water, which makes the inftrument perfect in its kind.

> An Aurora Borealis at Geneva, Feb. 15.1730. N. S. by M. Cramer. Phil. Tranf. $\mathrm{N}^{\mathrm{c}} 4 \frac{1}{3} \cdot \mathrm{p} \cdot 279$.

7HE aurora borealis itfelf had nothing extraordinary; it: was a quiet one, that is, without any fenfible motion, excepting, perhaps, an alternative increafe and diminution of apparent altitude. Whether it was for this reafon, or becaufe: the light had its edge imperceptibly confounded with the colour of the heavens, feveral people judged of that altitude feverally. There are fome who pretend to have feen it to the very zenith :: M. Cramer was not fo happy, and could not fee it higher thani the girdle β of Cepberis, which was about 30° high. The greateft part fixed itfelf to the pole ftar, which is about 46° its bafe reach'd from the head of Andromede and further, to the fhoulder (γ) of Bootes and further ; and fo it infifted on an arch of 140 or 150° of the horizon. This meafure was, takem $\frac{x}{2}$ an hour after 8. Its middle declined from north to weft aboutt 15°. The light was ftill, and clear enough to read a character no bigger than that of M. Cramer's letter. The bafe feemedt obfcure to fome people.

But what was chiefly to be confidered was a large meridionall zone, pretty like a rainbow in its figure, but broader; it was terminated by two parallel arches: The fuperior infifted with onee
fide upon the true point of eaft, and with the other upon the point of fouth-weft, or weft-fouth-weft: Whence we fee its middle declined about 15° from fouth to eaft, and it was diametrically oppofite to the middle of the aurora borealis. Its altitude varied a little, but never reach'd higher than the head of Orion, which was 54° high; and never was feen lower than a little under Procyon, which is an altitude of 45 or 46°. The inferior arch was exactly parallel to the fuperior; and the breadth of the zone varied from 14 or 15° to 18 or 20°.

The colour of this zone was red, fcarlet, inclined to purple, pretty lively, and changeable by intervals. It was lefs vivid near the horizon, and alfo near the meridian, where it feemed now and then interrupted. Some by-ftanders imagined two great arches rifing; one from the eaft, the other from the fouth-eaft, and meeting together near the meridian, but immediately afterwards parting from each other, and drawing back; which they repeated very often.

Under this zone then was to be feen, but not conftantly, one or two arches, lucid and interrupted; which comprehended with the horizon a dark fegment very like a mift.

The phenomenon lafted till 4 o'clock in the morning. The weather was calm, ferene and cold; the barometer very high; no cloud in the heavens.

It was remarkable, and M. Cramer thinks extraordinary, that this aurora confiderably darkened the light of thofe ftars, which were feen thro it; and that was much truer of the red meridional zone, which dyed with its reddifh colour the fars that appeared behind. When that zone was the higheft, it cover'd 'fupiter': and fome Gentlemen, who at that time had not yet remark'd the aurora, looking at' 'Fupiter thro' a telefcope, affirm they could hardly fee it, but that it feemed as intercepted by fome dark cloud; and indeed, it looked at that time, as if it had been feen thro' a red glafs.

This obfervation confirms what is befides very probable, that this zone was produced by the light of the oppofite aurora, either by reflexion or refraction. But the manner of its production feems difficult to be accounted for. There may be fuppofed icy particles floating in the air, and of fuch a figure, as to exhibit a large zone, by the reflexion and refraction of the light of the aurora; almoft in the fame manner as the drops of rain produce the appearance of the rainbow: But this being mere conjecture, M , Cramer paffes it over.

The aurora and zone feem'd a great deal nearer each other in the horizon than in the top. If we could fuppofe this difference to be entitely optical, and thefe two circles really parallels, that would be fufficient to compute the diftance of the pheromenon from the earth. But the fuppofition, tho' it feemed at firt pretty allowable, is by no means to be admitted: For, it would follow, that the phenomenon was at leart diftant from us $\frac{x}{2}$ part of the diameter of the earth, which is too great an altitude.
Xoung Afh-trees Springing from rotten Wood; by the Same. Phil. 'Trant. N ${ }^{\circ} 413$. p. 282.

AFriend of M. Cramer's having caus'd fome athen pipes (that convey'd water to his fountain, for at leaft 12 years) to be taken out of the earth; they were left in an unpaved yard, where they almoft entirely rotted; but in their room there fhooted forth from the earth a little foreft of ah-trees: They are now in a flourifhing way, and about three or four foot "high. It is remarkable, that more than 50 young trees are frung up exactly where the pipes had been laid, and no where cle in the yard. There is no afh-tree thereabouts, nor perhaps at a very great diftance.
An Account of a Spiritus vini æthereus; together with fereeral Experiments tried therewith; by 1 Dr . Frobenius. Phil. Tranf N^{0} 4 F . P. 283.
Exper. I. HE xther of plants appears to be almoft deftitute of all grols air, from placing it under the receiver of the air pump: For, exhaut the air ever fo accurately, this xtherial liquor remains unmoved; nor does it emit any air-bubbles, which immediately arile in other liquors; and according as their quantity of intrinfic air is greater, fo much the fooner are fuch liquors put into agitation, emit more froth, and excite more vehement ebullitions, in proportion to their vifcidiry. Hence it follows, that this ather may be preserved beft (becaufe without any diminution) under the receiver in vacuo; whereas on the contrary, expofed to the open air, its parts foon evaporate; and its whole bulk, but not compreffed by the air, vanifhes. (Tbis experiment faild remarkably.)

Exp. 2. A little of it, pour'd on the furface of the hand, affects it with a fenfe of cold, equal to that from the contact of fnow; and blow upon it but once or twice with your mouth, your hand immediately becomes dry. However, beware of approach.
approaching a lighted candle with your hand thus wetted, left it take fire and burn you. (Succeeded.)

Exp. 3. Being poured upon hot water, it caufes fuch a fridor and hifing, as is frequently occafioned by a piece of hot iron thrown therein. Take a lump of fugar, let it imbibe fome of this athereal liquor, and put it into a veffel full of hot water, the fugar will, it is true, fink to the bottom, but the athereal liquor rufhing violently forth, excites a great ebullition in the water. If a fpoonful of this wther be pourd into a copperpot full of boiling water, without any fugar in it, and apprrach inmediately with a candle or a lighted paper, there inftandy iffues forth from the water very great lightning. The handle of the fpoon, as well as the tongs for holding and applying the lighted paper, muft be of a proper length, that the poiring of the rethereal liquor upon the hot or boiling water, and the application of the lighted candle or paper may be performed at the fame time; otherwife the ather is immediately diffipated, without any fuch effect. 'There is, therefore, need of an ai'fiftant, or of both hands; and likewife of a room where freth - air may be readily admitted, proportionable to the magnitude 'of the flath of lightning, which rarifies the air in fuch a ' manner, as to endanger the ftoppage of refpiration.' (Succeeded.)

Exp. 4. Hence it appears, that this xther is both fire and a very fluid water; but fo volatile that it foon evaporates, and that it is the pureft fire: Infomuch that if kindied in a thoufand times the quantity of cold water, it burns inextinguithably: Wherefore, if you take an earthen veffel of any magnitude, whote mouth or orifice may be one or two yards wide, but the inferior part of the veffel contain 600 or 6000 gallons of water, (the experiment will be the fame) pour on the top but one ounce, or a fmall phial full of this æther, and apply it to a lighted wax candle, it takes fire immediately, burns placidly, and is fo far from being extinguiflied by the moft profure fupereffufion of common water, that it much increafes the vehemence of the flame, and lafts till the fubtile parts of the xther are confumed and ventilated by the flame. This experiment ihnold be made in a large and high room, not in danger of taking fire. (Not Joerved.)

Exp. 5: The fente of touch does not difcover the leaft oilinefs or fattinel's in this ærhereal liquor; tho' it be the rrue, natural, and only diffisvent, or menftruum of all fat, oil, rufin and gum whatfoever: By means whereof all torts of fat, and everv
kind of fire or flame, is extricated by a fpeedy, fafe, and pleafant operation. On thefe accounts it is that this æthereal liquor will not unite with any kinds of falts whatfoever; but all lorts of oils, pitch, turpentine, opobalfams, camphire, wax, ambergris, fpersma ceti, maftick, mufk, copal and the like, it diffolves moft readily, and with the greateft eafe extracts their beft effences.

Exp. 6. And, indeed, a wonderful harmony is obfervable between gold and this æther, even greater than between gold and aqua regia: Infomuch that from hence gold appears to approach nearer to the nature of oils than of earths, as fhall be proved, when we treat in their proper place of the three harmonious ment trua, which we have difcovered, viz. the corrofive menferuim for the devoration or folution of earths, minerals, and metals; the aqueous menfrumm for the folution of all kinds of falt; and laftly the athereal liquor, or oleous menfiruum. If a piece of gold be diffolved in the beft aqua regia; and an ounce and a half (or what quantity you pleafe of the athereal liquor) be pour'd upon the folution, cold; fhake the glafs carefully, and all the gold will pafs into the athereal liquor, and the aqua regia, divefted of all its gold, will prefently depofite the copper at the bottom of the veffel, like a white powder, which, turning of a green colour, contains the portion of copper, with which the gold was adulterated. The ether will fwim like oil on the furface of the corrofive waters. The experiment deferves the utmoft attention: For, here the heavieft of all bodies, namely gold, is attracted by this very light ather, or (whereas the air, which, with a common force, preffes alike all bodies, is here excluded, and the ather itfelf encompaffes and touches the furface of the water) the gold by the force of its gravity, as by an impulie, would defcend from thence; or Jaftly, this phenomenon is owing to a certain harmony and fimilitude of both of them. (Succeeded.)

Exp.7. Ather then is certainly the moft noble, efficacious and uleful inftrument in all chemiffry and pharmacy ; ubi enimz ignis potentialis, ibi actuali non opus eft; inafmuch as eflencè̀ and effential cils are immediately extracted by it, without fo much as the mediation of fire, from woods, barks, roots, herbs, flowers, berries, feeds, EEc. as alfo from animals and their parts: Thus, from caftor, by a certain manufaction, may be prepared an oil fweeter than that of cinnamon, and alfo the true oil of faffron, of wonderful efficacy; and all by this particular encheirefis, without the help of fire or difillation: For
an example, take mint, fage, or orange-peels, cinnamon, ESco or all thefe together; cut and bottle them up; pour on them a fpoonful or two of the æthereal liquor; and after it has ftood an hour in a cold place, fill up the bottle with cold water, and you fhall fee the effential oil, fwimming on the water, pouredupon them, eafily feparable by the funnel, or inftrumentunz tritorium: Of this effential oil one drop only upon a lump of fugar, manifefts to the tafte, EEc. the medical virtues of the plant, exquifitely drawn out, comprehended in this effence, and defervedly named Cos; as containing the colour, odour, and fapor or tafte of the plant of plants: In like manner, the effential oils of exotics are eafily prepared. (Succeeded) But it is not a true effential oil, but an exceffive ftrong tineture, which you may call the effence).

Exp. 8. Of the like ufe it alfo is in the animal kingdom, where it produces an effential oil of phofphorus; as likewife in the mineral kingdom ; tho' not fo immediately, becaufe the refolution of earths mult preceed: It is, moreover, eafily proved, that the fame liquor extracts the pureft gold, or every part of the golden fyftem from any, or all the bater minerals: And that this gold, thus extricated, is by this one operation better and fooner purified than by fufion of minerals with antimony.

Exp. 9. This our water is neither corrofive, nor joined with apparent corrofives: Wherefore, fill as many bottles with rethereal water, as there are forts of falts; and into the firft drop oil of vitriol, put into the fecond, fpirit of fea-falt; into the third, fpirit of nitre, or of alum; or of fil-armoniac, prepared with water, or the lixivium of tartar, or rectified wine-vinegar, all the falts immediately fink to the bottom : Befides, it is the lighteft of all liquors; for, fill any veffel with 20 ounces of oil of vitriol, the fame emptied, will contain but 9 of æther : It is the very ens, or being, moft pure of flame; wherefore, neither foot nor afhes are ever found upon its deflagration (Succeeded.)

Thus far Dr. Frobenius: But to make this account more than a mere harangue, it is abfolutely neceffary to fubjoin two paragraphs out of a paper of that excellent chemift Mr. Goiffrey (Dr. Frobenius's fellow-labourer in thefe experiments) which he delivered in to the Royal Society, when this æther was made public before them.
' Feb. 19, 1729-30. That this wthereal liquor was for-- merly very much efteemed and enquired into, doth clearly ? appear by an experiment I made formerly for Mr. Boyle,

54

MEMOIRS of tio
: by means of a metallic folution, namely, by the folutions of crude mercury. united with the phlogifon vini, or other -vegetables, and this ather fwam on top of the folution, ' which I feparated per tritorium. Note, this is what I have - formerly done in Mr. Boyle's laboratory, and Sir Ifaac - Nerwton was very well acquainted with it; which by reaton - of Mhortnefs of life was not brought to a full end, to do it 'fo readily in quantity. But when Dr. Froberius by experi-- ments made on this in my laboratory, produced it in greater ' quantity; he wanted to fee how Far Sir Ifaac Nerwton had - gone on with it in his book. There we faw that great man's - application in fol. 330 , that he had done it cum ol. vitriol. - Er Sp. vini.

This of Sir Ifaac Newton is the /p. vini etbereus; only there is a difference in the procefs: The liquor etbereus is made with equal parts in meafure, not weight: The upper yellow liquar is feparated from the inardent fulphureous liquor per tritorium: The inferior liquor is thrown away, and the upper yellow liquor is put into a retort, to be diftill'd with the molt gentle heat; and the extracting of the rethereal liquor is continued fo far till the fuperior hemifphere feel cold, and the retort being clapp'd in the hand, there be found in the receiver a vino fulphureous gâs, very rechereal. Let the fulphur be precipitated by adding an alkali, and gently throwing it in till all ebullition ceafe, and the liquor will not farther ftrike itfelf againft the hand, but ftrangely attract it ; then the alkali will of itfelf go to the bottom, or precipitate itfelf in the common water.
An Hermophradite Lobfter diffected; by Dr. Nicholls. Phil. Tranf. No 413 . po 290.

IT is not eafy to conceive, how an hermophradite can be formed in a fpecies, of which each fex has the parts, fubfervient to generation, fingle, and neceffarily fituated in the fame parts of the body; at leaft without either a very remarkable mal-formation of the body in general, or fo perverted a fituation of thofe parts, as muft very, much impair their ufes. But in thofe animals, whofe parts of generation are double and independent on each other, as the lobfter, crab, and feveral birds, the parts proper to both fexes may poffibly be formed in the fame fubject, without prejudice to their ufes : But in that cafe the feveral parts can be but fingle; and confequenty, the fubiect fo formed cannot be call'd perfect as.

a．

Roỹe Society.

 to its fpecies, in regard to either fex; tho' it may be perfectly of both fexes, fo far as regirds generation.Under this idea of an hermophradite, Dr. Nicholls ventures to affirm, that the lobiter, referr'd to his examination, is truly one; and if fplit from head to tail, is female on the right fide, and male on the left.

To illuftrate this, he gives a fhort account of the ftructure of the male and female lobiter; fo far as relates to the difference between the two fexes; and then he proceeds to fhew in what manner they were combined in this fubject.

It has been already obferv'd that the lobfter, both male and female, has all the parts of generation double, only that the female has but one paffage, thro' which it is probable the ova are emitted out of the trunk, in order to be affist to the fruall appendages under the tail.

The penis of the male lobfter rifes from the tefis, and is no more than a continuation of the vas deferens; it is refleated and retorted once, after which it grows thicker, as to its fubAtance (probably forming a corpus caverno fum) and terminates, not in the laftleg but one, as Willis in his Treatife de animâ brutorum, has obferv'd, but at a fmall perforated tubercle in the firft bone of the laft leg. A A (Fig. I. Plate III.) reprefents the two penes.

Between the two laft legs and the two legs above them are two procefles; which, from their refembling the nymptoe of women, the Dr. calls nympheform proceffes: Thefe procefles are cover'd with hair, and unite at their bafes, without leaving any paffage B B.

Below the two laft legs, towards the tail, are two appendages, which, from their likenefs, he calls the ftyliform appendages: Thefe in the male, as CC are thick, bard, and without hair.

The tail is continued from the trunk in a gradual decreafe of its dimenfion, and is covered by plates, which extend themfelves but little below the fubtance of the tail, and terminate in acute angles, as reprefented at DD.

It is to beobferv'd, that fometimes thefe plates are edged with fhort and thin hair, and fometimes they have none.

The female, on the other hand, in the place of the tefis has an ovarium, which, like the teftis, extends iffelf from the ftomach to near one halfof the tail. From the middle of the ovarium, a duct defcends to the legs, that opens at a round hole, edged with hair in the firt bone of the laft leg

MEMOIRS of the

but two: This is the uterus. AA (Fig. 2.) reprefents the entrance into the two vaginc.
The two procefles BB, which in the female, he calls nympheform, form a more obtufe angle at the union of their bafes; are lefs hairy, and leave a paffage D, thro' which it is probable the ova are emitted, in order to be affixed to the appendages under the tail.
The two ftyliform appendages in the female are foft, thin, and edged with long hair, as reprefented at C C(Fig. 2.)
The plates covering the tail in the females are extended much farther under the tail than in the males; befides, they diverge, in order to leave a larger fpace for containing the ova; for the better defence of which they terminate broad, and are edged with thick and long hair, as F F (Fig. 2.)

In the hermophradite lobfter the Dr. found all thefe parts, proper to both fexes, regularly difpos'd; but in fuch a manner that the parts proper to the female were to be found only on the right fide; and the parts, proper to the male, only on the left fide.

In the laft leg but two the os uteri A (Fig. 3.) was very obvious on the right fide, as in the females; but had not the leaft mark of any fuch paffage in the fame leg on the left fide.

The nymphaform procefs B (Fig. 3.) on the right fide form'd an obtufe angle at its infertion into the body, and was foft and perforated as in the females; while the correfponding procefs form'd a lefs angle, and was more hairy and rigid at its bafis, as in the male B.

The ftyliform procefs on the right fide D was foft, flat, and edged with hair, as in the female; but on the left fide E it was ftiff, hard, and without any hair.

In the laft leg on the left fide the perforated tubercle for the paffage of the penis H (Fig. 3.) was (as in the male) very difcernable; but without the leatt appearance of fuch tubercle in the correfponding leg on the right fide:

The plates covering the tail F (Fig. 3.) were extended on the right fide confiderably below its fubftance, and were edged with thick and long hair, and terminated broad, as in the female.

On rhe left fide thefe plates were much lefs extended below the tail; were almoft entirely without hair, and terminated in acute angles (G).

Thefe plates likewife diverged on the right fide, as in the females; but not on the left fide, as in the males. A (Fig. 4,) reprefents the diverging of the plates on the right fide; B the plates noways diverging.

Upon removing part of the great fhell, the Dr. found the internal parts of generation in both fexes exactly correfpónding to the external parts defcrib'd.

In the right fide adjoining to the heart; the ovarium F was regularly difpos'd; it was full of ova, and fent off its oviduct or uterus G to the laft leg but two.

In the left fide the teftis was rightly difpos'd as to its form, fubftance and fituation; part of which he was obliged to remove, in order to thew the penis E , which terminated as in all males, at the tubercle in the firft joint of the laft leg I, part of the teffis unremov'd.
He had fome thoughts of removing fo much of the great fhell, as was neceffary to fhew the courfe and terminations of the uterus and penis at their proper orifices: But confidering that by that means the tail would too eafily leparate from the trunk, and the appearance of the othermarks be render'd lefs obvious, he chofe orly to lay them open at the back, thinking that to be fufficiently fatisfactory to thofe who urderftand the ftructure of that animal. He fteep'd it in three different forts of fpirits, and carefully difpos'd it in a glafs, which he ftopp'd in the beft manner he could, that it mighr remain in the repofitory of the Royal Society, as an undeniable proof of fo remarkable a fact.
Magnetical Obfervations and Experiments; by Mr. Savery. Phil. Tranf. $\mathrm{N}^{\circ} 4^{4} 4$. p. $295 \cdot$

1. WHAT he calls the magnetical line is the pofition of a dipping needle, when it ceafeth from ofcillating, and is at reft in the magnetical meridian of the place.
2. By the word magnet (unlefs diftinguif'd) he would be underftood to mean not a loadfone only, but either that, or iron or fteel, when they have permanent polarity, or any thing elle (if to be found) which has a fenfible magnetical or polar attraction.
3. He always calls that the north end of the magnetical needle, which (if hung horizontally) naturally turns to the north; and that the fouth end which turns to the fouth: But when he ufes the words pole of a needle, he calls that the

Voc. 1X. $=$
H
north

MEMOIRS of the

north pole thereof which turns to the fouth, and that the fouth pole of it which turns to the north.
4. He calls that the north pole of touch'd iron or fteel (ort of untouch'd, fo long asit remains in a pofition which givess it polarity) as well as of the loadftone itfelf, which attractss the north end, i. e.the fouth pole of the needle; and that the: fouth pole which attracts the fouth end, or north pole of the needle: Or in other words, he calls that the north pole in alll forts of magnets, which is endu'd with the fame kind oft virtue, which the north pole of the earth hath, and confequently is repell'd thereby: E contra \&c.
5. He prepared nails of feveral forts, from the fmalleft fort of bellows-nails to the largeft fort of rafter-nails, one or twoo of each fort, or more of the fmaller: He held each of them perpendicularly with its point upwards; and placing horizontally thereon the right fide of a file, he filed off a little from thee point thereof (more or lef's according to the fize of the naill, perhaps about the thicknefs of a fixpence from a fixpennys one) then on a plane hone, held horizontally, he placed thec nail upright, with its point downwards; and fo rubbed off the ftrokes of the file : Then he rubbed it a little on a piecte of leather. N. B. The truer this little narrow plane is, and the more exactly perpendicular to the axis of the naill the better.
6. He prepar'd iron bars of different lengths after theo following manner: He made each end in the thape of the lower fruftum of a pyramid, cut tranfverfe to its axis abount the middie, or a little higher up: Then he filed the ends on the bar, as plain and perpendicular to its axis as pofiible and poliih'd them with a hone, $E \xi c$. as he did the nails.
7. One of the needles (Fig. I. Plate IV.) he us'd untouch' fortrying experiments, was made thus: He took fome iron wire, about the fize of a fmall knitting needle, and in lengtl: about two inches and a half; with a hammer he made it jul flat enough in the middle, to be able to fix the point of : punch, pointed to as true'a cone as poffible; its fides (as heo conjetures) formed an angle with each orher at the verte: about 45 degrees or more; in the middle of the wirro be punch'd a hole, at leaft half way thro' the thicknet thercof, and wrought the hole with a drill (pointed like shi punch) that it might be exactly round, and cleans'd off tho roughnefs, which the purch and drill had rais'd round th

$$
v
$$

8
hole, left it fhould injure the top of the pin, when it was placing thereon; then he bended it, as reprefented in Fig. 2. taking care to bend it the right way, that the hole might be on the under fide. Then he mark'd one end, by flatting it a little with a hammer, that it might be known from the other: Then placing it on a fharp pin, to find which end was heavieft, he made both alike in weight, and divefted it of all fixt magnetifm. Then he brought it again to as true a poife as poffible, by rubbing the heavieft end on a whetfone, and not a file, which might give it magnetifm again: He fitted for it a pin of brafs wire, full as fmall as the middle ftrings of a finnet, making the point very meagre and round as well as fharp, and he frequently obferv'd it with a lens of two inches focus; and if it appear'd flat, he mended it on a hone, and took great care in putting on the needle, fo as not to injure the tender point of the pin: He put a glafs over it, to keep off all manner of fanning by the air, the leaft degree whereof fpoil'd the experiments.
8. He made a fecond needle, which he thought better than the former, in the following manner: In the middle of fuch a piece of wire, as the former was made of, he wrought a hole thro' it as perpendicular to its axis, or length, as poffible, and as fmall as any of thofe, drill'd thro' the pillars of 2 watch, if not fmaller; and having bent the wire as in Fig. 3 . He mark'd one end thereof, and drove into the hole a fmall brafs pin, fitted to it, very round and Sharp at the point, which refted on a deep plano-concave lens of glafs, well polifhed, as in the figure. He fitted a box for it with a glafs over it; which glafs was faftened with a ring of brafs wire, as the glaffes of telefcopes are; which ring kept out air, otherwife it had been needlefs: The glafs concave was fix'd in the large end of a thin brafs ferule (like that of a ftaff) juft fit for it; and the fimall end of the ferule was fixt in a hole made for it in the middle of the bottom of the box: He alfo put a ring of thin brafs on the top of the lens, not only to keep it in fteady, but to prevent the pin from going in between the lens and the ferule, which fpoils its point: But doubtlefs a concave of diamond is better.

Whenever Mr. Savery ufed one of either fort of thefe needles (efpecially, for fuch experiments as requir'd it to be perfectly void of fixt polarity) he was obliged to keep it in a motion, either librating up and down like the beam of a pair of fcales, or trembling, (which is a fhort pendulous

MEMOIRS of the

ofcillation from fide to fide) or elfe both librating and tremb$\mathrm{ling}_{\mathrm{n}}$ at the fame time; which faid two motions being at right angles with each other, are not inconfiftent: And if the needle be truly pois'd, the horizontal verticity is neither obftructed, nor accelerated by the librations; becaufe they are at rightangles therewith; nor by the tremblings, becaufe the two ends perfectily balance each other in contrary motion. The fervice they do is to abate that friction on the pin's point, which retards the horizontal verticity: For, when the friction is divided between the horizontal verticity, and the librations or tremblings (either of the two latter rolling on the pin more (peedily) the far greater part of the friction is fpent on the librations or tremblings; and confequently, there is but little left to retard the horizontal verticity. He takes fuch a needle to be far better for his purpofe than the common ones, which have a heavy focket of brafs, or fteel, in the middle; only ufeful to render them portable, but very detrimental in nice experiments; becaufe the weight of the focket not only blunts the pin fooner, but likewife increafes the friction, tho' the fame acutenefs of the pin fhould be fuppos'd to continue. To renew the tremblings when they began to abate, he feldom jogged the box on the table, for fear of giving it (and the needle within it) a circular motion, which obftruets the defign: But he found it beft to do it by jogging the table gently. When he had occafion to turn the needle to any other point of the compafs, he elevated that part of the box which was under one end, till it refted on the bottom; and in that pofition he could turn it as he would; but befôre he could let down the box again to an horizontal pufition, he was obliged to wait till the needle was very fill, and to let down the elevated fide eafily, and with a direct motion: Otherwife the needle, as foon as both its ends were free, would bave more or lefs of a horizontal motion.

The obfervations Mr. Savery made are as follows.
He was convinced by feveral properties of the load-fone, that there is nofuch thing in nature as magnetical attraction without polariry, which is conflituted of attraction and repulfion; and thefe two powers being always equally ftrong in the fame pole of every magnet, he takes it to be a plain contradiction to fay, that this or that loadfone has a ftrong attraction, but a weak polarity of direction.

Every frufum of a load-ftone is an entire or perfect loadflone, having in iffelf both poles as the whole ftone had; and
the poles in each fruftum have their direction (as near as the figure of it will admit) in the fame parallel line in which they were directed both in it and the whole ftone, before it was feparated therefrom : For, the polarity of every fragment is ufually, if not always (before they are feparated) parallel to that of the whole ftone; and confequently, to that of each other: And if ever it be found otherwife, Mr. Savery cannot but think that that loadftone wants of perfection.

Let $N \Sigma v \sigma$ (Fig. 4.) reprefent a loadfone in the form of an oblong right angled parallelopipedon, whofe polarity is lengthwife ; N being its north pole; e the pricked line, its equinoctial (or middle between its poles) where it has no attraction, and σ its fouth pole: Let it be biffected at e, tranfverfe to its polarity, or length: Each of its frufta (when placed too remote to act on each other) will infallibly be poffeffed of both poles (with its equinoctial in its middle) as the whole flone wasbefore its biffection: And tho' originally the one fruftum N Σ was all over a north pole; and the other $\nu \sigma$ all over a fouth pole, as while they adher'd to each other; yet now they are divided, and placed beyond the reach of each other's virtue, one alf of the fruftum $N \Sigma$ from the place of its quondam contact 2 , to its middle e, does inftantly become a fouth pole, and arract ftrongly at the place of contact aforefaid; which attriction is gradually leís and lefs, till it be abated to nothing at e. In like manner one half of the fruftum $v \sigma$, from the place of its former contact ν to its middle or equinoctial e, inftantly beomes a north pole (gradually abating in ftrength from ν to e) tho the whole fruftum, before its feparation from the other, was a fouth pole: The polarity being likewife directed the fame way in each fruftum, that it was in it (and the whole Itone before the biffection. The cafe alfo would have been the fine, if the ftone had been divided unequally at x or elfewhererranfverfe to its polarity; and one half of each fruftum wouldhave been a north pole, and the other half a fouth one, with it equinoctial in the middle as before. The whole fone will li; a larger iron than either fruftum ; but both frufta, while ot of the reach of each other's virtue, will each of them jifit his ron; both which irons will be heavier than what the whole ftone could lift before it was divided. If the faid frufta are again joined clofe together at the fame ends, which originilly adher'd (Fig. 4.) being as they ftand directed towards ech other (Fig. 5.) or if the oppofite ends of both are joined ugether, as they Itand dire\&ed towards each other (Fig. 6.)

Mr. Savery does not fee (provided the joint be very good, that there may be a contact all over it, as good as a workman can make) why they fhould not again compofe one entire loadftone; in all refpects as good as it was before it was divided (allowance being firtt made for the wafte in fawing it afunder, and mending the joint) and their joined poles mutually attracting each other, attract nothing elfe at the joint (which being in the middle would become its equinoctial) but tranfmitting their virtue thro' each other, the pole Σ of the one fruftum (Fig. 5.) entirely fpends ittelf in ftrengthening the fimilar pole σ of the other fruftum, by weakening the pole thereof ν, and vice ver/ $/ d$: And if their lengths fhould be unequal, like the frufta of Fig. 4. divided at x; the equinoctial would not be at x, where they were join'd together again, but always at e, the middle of their whole conjunct length, as it ufes to be in one entire load ftone of the fame bignelis from pole to pole: For, he apprehends, if any loadftone fhould be wrought very tapering from one pole to the other, that the equinotial could not be pre cifely in the middle thereof; but according to what degree of tapering it is wrought to, be removed nearer to the great end: But for want of proper loaditones, he could not try thefe thinss, nor yet the following on Fig. 7 . which reprefents a luadftone in the form of a right-angled parallelopipedon; its thicknef's me unch, its breadth af fix inches, its length ac feven inche or more; baving its polarity not perfectly lengthwife in it, but fomewhat oblique, as the fhade-lines reprefent it. If fror one of its ends $c d$ be cut off the parallelopipedon bcde arinch from the faid end, it will be an inch fquare, and fix nches long: He fuppofes this Jeffer fruftum would have its plarity changed, and its direction, inftead of running from e fonewhat towards d, would run from e towards c in the diagonal Ine $e c$, or in fome line or other between the lines $e b$ and $e c$. Ae alfo imagines, that if a cube were cut off, within a little tine after, from one end, the polarity therein would be directed, s it was therein, while all the faid frufta adhered together; but if the leffer fruftum $b c d e$ fhould long remain teparated from the whole ftone, before the faid cube was cut off, that th polarity of the cube would be more or lef's fixt, and conform ifelf more or lefis to the direstion of the line e c . However, this is cerain, that if the two frufta are joined together, as they fand direied Fig. 5,6 . with the north pole of one to the fouth pole of the other, they affift each orher in lifting iron: If joined (Fig 8.) with the touth pole of one againft the louth pole of the other by
repelling they reciprocally deftroy each other's virtue, and likewife hinder each other's attraction at the north poles, which are not joined. If they be placed together, as in Fig. 9. tho' they endeavour to avoid each other; yet they do not deftroy each other's virtue fo much as in the preceeding cafe, nor yet at all, if there be a perfect contant : For, if this pofition of two magnets actually adhering would diminifh their virtue, one part of the fame loadftone would deftroy another part of itfelf; and in a very fhort time there would be no fuch thing as magnetifm. In this pofition they mutually help each other's attraction; becaufe their polarities are directed the fame way. If they be applied as in Fig. 10 . with their fides together, and their polarities contrarily directed; the north pole of the one (at either end) attracting the fouth pole of the other; and the fouth pole the north, they fcarcely injure each other's virtue by lying together in that manier; but hinder each other from attracting ocher things by fpending their virtue on themfelves.

He apprehends, that tho' a great magnet (he means of fuch as are fimilar in figure and feccific virtue) will lift confiderably larger irons than a fmall one; yet the fmall one fhall give to the fame piece of fteel (provided it be not too large for it to conquer) well nigh (if not altogether, as to fenfe) as ftrong a touch as the great one. And he has experienced, that if the imall one be pecifically much better, it will give the fame fmal! piece of fteel a confiderably ftronger touch than the great one can; tho' this laft be capable of lifting, perhaps, three or four times as much as the fmall one.
N. B. That if the great one be fo flrong as to give the fmall piece of fteel fo much virtue as it is capable of receiving (for, there is, he imagines, a ne plus ultra) that then fhould the fmall fone be ever fo much better, it cannot mend the touch given by the great one.

Some write, that the loadftone lofes none of its virtue by communicating it to fleel or iron, of which Mr. Savery tomewhat doubts the truth; efpecially, if the ftone be fmall in proportion to the fteel ; in which cale he has known touch'd fteel lofe conifiderable virtue.

Steel is not only more receptive, but more retentive of magnetifm than common iron; iron or fteel hammer'd hard, more than the fame while foft; but fteel harden'd by quenching, more than either of them. Mr. Savery has obferved, that tteel carnot be feafoned ton hard for retention (nor, as he thinks, for reception) of magnetilm ; but may fometimes warp

64

MEMOIRS of the
roo crooked for its intended ufe; and muft be made right again fome way or other, either with a grinding ftone, or (if that will not do) by heating it to a blue colour, and gently hammering it while hot; but if it can be helped, the temper for the blue: colour is too foft.

Not only iteel, or iron regularly touch'd, but likewife ob-. long iron, void of permanent virtue (fo long as it has a tranfient: virtue by pofition of either of its ends towards the pole of a loadfone, large enough to affect it at a confiderable diftance) will perform all that any loadtone can, tho' not with the fame degree of power: For, either of them will attract, keep one piece of iron fufpended to another, and communicate fome degree of permanent polarity to fteel well hardened, as he has experienced, and likewife to an iron-wire.

The earth's central loadfone has all the fame virtues which others have, and no difcovered ones befides.; and tho we cannot approach it, yet it acts as others do at a proportionable diftance: He has experienced, that it will keep a prepared fixpenny (or with more difficulty a ten-penny) nail, fufpended to a prepared iron bar about $\frac{7}{8}$ of an inch fquare, and 5 or 6 foot long, in an erect pofition with either of its ends downwards. He hung up the bar in a room by a loop of fmall cord, faftened at the upper end; be then carefully wiped the lower end of the bar, and the point of the nail, that there might be no duft nor moifture to prevent a good contact, taking care not to touch either of them with his finger, left perfiration fhould fully them. Then holding the nail very erect under the bar, with its point upwards, he kept it clofe to the bar, by bolding only one finger under its head, for the fpace of 30 or 40 feconds or more : Then he withdrew his finger very gently, and directly downwards, that the nail might not ofcillate; and if it fell off, he wiped its point as before, and tried it again at fome other part of the plane at the bottom of the bar: For, he always found that it would more readily bang at one place than another; and ufually the middle was not fo well as towards one of the edges or corners; and the fuccefs better nigh one edge or corner than another. If both ends of the bar be equal in bignefs, and the preparation of their ends fimilar; it is indifferent which end is downward, if it have no permanent virtue: But if it have no more than an inchoate or imperfect degree of fixt polarity, one end will anfwer better, and the other worfe, in proportion to the degree of imperfect polarity it has.

As foon as a foft iron bar, void of fixt polarity, is in an erect pofition, the higher part from the middle upward, becomes a north pole in north, or a fouth pole in fouth magnetic latitude : And e contrà, the lower part from the middle downward becomes a fouth pole in north, and a north pole in fouth latitude: But as foon as ever the bar is inverted, the polarity will be fhifted in it, and in north latitude the end newly placed upward becomes the north pole, tho' it were a fouth one immediately before; and the other end the fouth pole, tho' it were its north one juft before. The cafe is the fame, if fuch a bar be placed horizontally in or near the magnetical meridian : For, the end directed towards the north will conftantly be a fouth pole; and that which is directed towards the fouth, a north pole: And as foon as ever the ends of the bar are Thifted, the polarity; in refpect of the bar, is alfo fhifted (but not in refpect of the earth) for which reaion this virtue is called tranfient, and is communicated by the earth's central magnet, in fuch manner as other load fones are faid to do.

Since in north latitude the north pole of the earth's central magnet not only communicates the virtue of a fouth pole to that end of a bar neareft it; but alfo helps it to lift iron, wheri neither the bar nor iron lifted has any permanent virtue; the faid magnet muft, therefore, neceffarily help the fouth pole of any loadtone or touched fteel in lifing iron, but hinder its north pole. This agrees with common experience, the north pole of a magnet being unable to lift fo much as its fouth one in north latitude, but more in fourh latitude.

This plainly thews the reafon why an armed magnet, when both its poles are applied to a piece of iron, will lift feveral times as much as with either pole fingle: For, the north pole of the magnet by fending its virtue thro the attracted iron, powerfully helps the fouth , poie of the faid magnet in attrafting. Again, the ftrengthen'd fouth pole muft more powerfully increafe the attraction of the north pole: And fince the poles mutually affift each othcr's attracition, with a power much gireater than if they themfelves are not affifted, the conjunct poles muft neceffarily lift at leaft twice as much, as borh of them can lift feparately. Mr. Savery once tried, and found the fouth pole armed to lift 1125 grains, and both poles united 5760 grains with a little more difficulty: The ratio is about 1 to a little more than 5 .

If a bar of iron or fteel (not having the leaft degree of fixt virtue) be placed in any pofition (exsept at or near a right angle Voモ. IX. 2
with
with the magnetical line) it will not only for the prefent receive a tranfient polarity thereby; but if it remain in that mannert long enough, the faid polarity will gradually become fixt or permanent, more or lefs according to the hardnefs or foftnefs off the bar, the time it has remained in that pofition, the angle itss length forms with the magnetical line, and the proportion off the length thereof to its bignefs'; the longeft (cateris paribuis) ufually receiving moft virtue: And fometimes when all thefe: advantages concur, the polarity will be fenfibly permanent in a Iittle time, and not require a very long time to be rendered pretty frong.

By placing the faid bar afterwards in the fame pofition, only with its ends fhifted, it will gradually lofe its acquir'd magnetifm, and at length have its polarity changed.

Mr. Boyle found one of his loadftones much impaired by lying long in a wrong pofition; Mr. Savery fuppofes he meant a repelling.one, with its north pole towards the north pole of the: earth. In like manner by applying one pole of a very finall piece of loadtone to the fame pole of a large one, he foon changed the polarity of the former; but could not effeet it on a piece of any confiderable bignefs, tho' he tried fome hours. Mr. Savery changed the polarity of a fmall fruftum of loadftone fuddenly, and without a contact; by holding one of its poles nigh the fame pole of a piece of touch'd fteel, much lefs than a common cafe-knife, at about $\frac{7}{8}$ of an inch diftant, which would make the fruftum leap to it . He frequently repeated thete changes with the fame fruftum.
From this, and fome of the preceeding experiments, Mr: Sa very concludes, that if two parallelopiped loadftones, equal in magnitude, and fimilat in fubftance, figure and virtue, are placed clofe together, as in Fig. 8. with the north pole of the one direted againft the fame pole of the other; or with the fouth pole of the one againft the fouth pole of the other; and the direction of their polarities magnetically eaft and weft, they will, by repulfion reciprocally dettroy each other in an equal, tho' long time: But if they are placed (in the fame fituation with refpect to each other, viz. north pole againft north pole, or fouth pole againt fouth pole) with the dire?ion of their polarities in or near the magnetical line, that ftone (in north latitude) whofe fouth pole ftands directed to, or pretty much towards the attractive point of the earth's central magnet, receiving, affifance therefrom, will not lofe virrne fo faft as the other; and confeguently, never lofe all its virtue, till it have entirely
entirely deftroyed the polarity of its antagoniff, which it will do in lefs time, and afterwards communicate to it fome polarity again, contrary to what it had at firf.

Tho' fire deftroy fixt magnetifm in fteel or iron; yet if they are fet to cool in an erect pofition, or rather in the direction of the magnetical line, they will acquire more or lefs fixt virtue by the time they are cold; but efpecially fteel heated to a leafoning height, and in that pofition coold fuddenly under water, which Mr. Savery found to fix its polarity fo thoroughly, as that with its north pole hold downwards, it would atrract the north end of a dial needle.

While a piece of iron of fome maguitude is held at one pole of a load ftone, it will increafe the attraction of the other pole thereof, and enable it to lift fomewhat more.

If either pole of a magnet, fufficiently large, toucheth one end of an oblong piece of fteel (not too big and long for the magnet to act eaflly thereon) it will tranfmit its own virtue to the other end of the freel, which is fartheft off, and make it a pole of its own kind; whilf the end, which touches, the ftone, has virtue communicated to it from the contrary pole: But the virtue ufually is not fo ftrong in the end which is untouched, as in that which is; tho' Mr. Savery does not know but in fome time it may acquire more; and the other lofe fome, till the virtue in each end be nearly equal.

Not only a touched horizontal needle, which has permanent polarity, will endeavour to conform itfelf to the magnetical meridian; but likewife one that has no other than tranfient virtue, and is with the greatef care freed from fixt magnetifm (if made and ufed in the manner above-mentined) will do fo too: tho' with this difference, that which end foever happens to be placed nearelt towards the magnerical north will faintly turn thither; and if that end be not iuffered to remain fo ton long; then the other end, placed neareft to the north, will two thither as the firt did. In trying this experiment, Mr. Savery fometimes found, that when the needle had refted in the meridian only a few minutes, it acquired a perceptible permanent virtue; fo that its other end would not be attracted to the magnetical north, unlefs it were placed confiderably nearer thereto than he had placed the firft end; and having food in this manner for fome time, it again loft the faid inchoate permanency, and received polarity the contrary way. Once, whilf Mr. Savery dined, and fat but a little time after, be could not make the end which he lefe towards the fouth to fland towards the north,
unlefs he placed it very true in the meridian: So that he was. obliged to free it again from magnetifm, before he could ufe il to repeat the fame, or try the following experiment: For, thio leaft fixednefs of polarity in the needle would more or lefs oby ftruct both.

At the magnetical eaft or weft of the needle's pin, as exactly as he could guefs it, he held at a confiderable diftance, eithee the fouth pole of a loadtone, or lower end (which is the fouth pole) of an erect bar (both of them anfwered alike) and graa. dually approached it nearer in a direct line towards the pin, till it began to attract the needle, which he obferved was as he ex pected at the fouth end: He then changed the ends of the neea dle, and gradually approached the fouth pole of a magnet aas before, and conffantly found it to attract that end, which waas towards the fouth; and the north pole of the magnet, would after the fame manner, attract the north end of the needlee when it had only tranfient virtue.

In his younger days Mr. Savery diverted himfelf with mak ing an horizontal needle, and a dial box for it, one of hi fchool-fellows having a loadftone. Before he could have the ufe of the ftone, he ofren held the needle within its box, fomee times with its intended fouth end towards the bottom of a wimdow bar (having obferved one of his companions try it with his pocket needle, which was touched) and at other times he would hold the needle's north end at the top of the bar. He obferverd the needle which was hung very tender, to make vibrations aat either end of the bar. He happened to fet it down in the wim dow at a good diftance therefrom; and found the fouth enor more inclined to vibrate to the bottom of the bar than the north end ; and obferving it to have fome virtue, he though of increafing it by taking the needle nut of the box, and ap plying it to touch the bar with its proper ends. By this me: thod alone it acquired fuch a degree of polarity, as would com ftantly turn its proper end to the north, if it were kept trem bling; but if he placed its contrary end to the bar, the polaritty would be immediately changed. By this way of managemem he could give it but a faint verticity, which toon became mort vigorous, when he got the ufe of the loadtone, tho fmall and none of the beft, and the needle foft iron. This was all he lnew at that time of magnetifin.
Having forme few years before had a frefh inclination to makse fome magnetical experiments, amongtt orher thoughts, the abovementioned occurred to him; namely, that iron, withoun
ány fixt polarity at all, might (if it moved tenderly enough) conform its ends to the magnetical meridian; which at length put him upon making fuch needles, as are defcribed above, either fort of which anfwered his expectations as above-mentioned. Afterwards he touched one of the firt fort of needles (defcribed pracogn. 7 : whofe length was $2 \frac{5}{8}$ inches, and weight i $\frac{1}{2}$ fcruple and 2 grains) on a piece of tranfient iron (made for armour to a magnet) which meafured in inches as follows, viz. each fide of the broad plated part about $1 \frac{5}{8}$; the parallelopiped part in length 2 , and in breadth (equal to its thicknefs) $\frac{3}{3}$: So that its whole length was full. 3 inches $\frac{5}{8}$: Its weight was 3 ounces 2 fruples Troy. This held with its length directed in the magnetical line, communicated to the faid needle virtue enough to vibrate about q times in a minute. He held the needle, while touching, in a horizontal fituation, with its north end directed towards the north; and placing its middle about the top of the iron, drew it along fouthwards. Likewife placing its middle about the bottom of the faid iron, he drew it northward, that the fouth end might be touch'd as well as the north. Afterwards he touch'd it the new way (to be mentioned anon) with the faid piece of armour, and a fmall piece of tranfient iron, which made it vibrate about σ times; and he believes it would have performed more vibrations, had the needle been hardened fteel.

Having no other than a fmall loadflone of a very irregular Shape, Mr. Savery was loth to diminifh it enough to bring it into a tolerable figure to receive armour, but did only grind a little place plain at each pole, where he bound the armour ors with thread. Its weight when naked was but 7 drachms, 2 fcruples, σ grains; its armed fouth pole would only lift y drachms $1 \frac{1}{2}$ fcruple, 3 grains; which was a key. He confidered, that fince a larger ftone of the fame fpecific virtue would lift more, it might poffibly communicate more virtue than what his could do to the fame piece of fteel; but could not fail of doing to to a much larger piece; and having obferved, that touch'd fteel would communicate fome virtue, as well as attract, he procured fome fleel-wire (the largett he could meet with) which having cut into equal pieces, and filed their ends as traniverfely as poffible, and very plain, he made a ftandard with a plate of iron, into which he could but jufe thruft the fhorteft; and filing all the reft till they would bat juft enter the itandard, he reduced them nicely to the fame length. Then having marked one end of each of them with the edge of a file, he tempered them very hard, and polith'd
them, ends and all, very bright. Each of them meafuted im length about 2.74 inches, and weighed 36 grains or more. With his loadftone he touch'd 37 of them, one by one, making their markt ends their fouth poles: He laid them fide by fide at about $\frac{1}{2}$ an inch diftance from each other on a board, with their marked ends towards the fame edge thereof, andl took care that they fhould not touch one another, affer they: came from the fone, before they were all of them touch'd thereon. Then having thread and armour, made, as reprefented in Fig. ir. \{one piece marked, which he applied to the marked! ends of the wires) in readineff, he fpeedily thruft them toge-ther into a bundle, and cafting the thread 2 or 3 times roundl them with his fingers he formed the bundle into a regulart hexagon as foon as poffible; and then bound them faft from end to end, and bound faft the armour: He took 57 wires, becaufe that number would form a regular hexagom at each end ; as will likewife 19 or 7 . Finding this artificial magnet exceed his natural one, he held the artificial in one: hand, and the natural in the other; the north pole of the one againft the fouth pole of the other; and placing their armours on the middle of one of his wires, he drew the magnets' afunder ; and fo touch'd both ends of the wire at the fame inftant. In that manner he touched one by one a fecond fet of wires, which he managed like the firft, and bound on the armour of the firft fet to the fecond. The fouth pole lifed a key, $2:$ ounces, 2 drachms, 2 fcruples, 5 grains Troy weight. Both poles united would, with difficulty, lift the faid key with weights faftened thereto, the whole, a pound Troy. He next tried with 19 wires, for which he made armour of a proportionable fize ; but that did not anfwer fo well, he rhought, as 37, tho' he repeated the touch. Afterwards he took 7, whichi he thought performed according to its quantity, as well as the 37 : Therefore, he ever after ufed the number 7 .
In the next place he thought of mending this way of touching, by placing all the 7 , or more of them, with their marked ends towards the north in a long fimall trench, whofe depth was jult fit for one of them, to keep it from rolling away, while he was.touching it and its fellows: The north end of one touching. the fouth end of the other, and adhering by their magnetic virtue, he placed the two magnets, as before, at their conjunct middle (not letting them remain there a moment) and then inttantly and fpeedily drew one magnet to one end of the wires, and the other magnet to the other end of them; by which method he touched them, all at once, as it were; and as if they
had been but one entire long wire. He found this way not only more expeditious, but more advantageous, giving all of them a fronger touch: But the wire at each end was not fo ftrongly touch'd as the reft: Therefore, he placed more wires in the trench than he had occafion for, and laid afide thofe as each end, whofe virtue was weaker. One of thefe wires, when it was thus newly touch'd, would lift a prepared nail $4: 75$ incheslong, weighing feven drachms and fix or feven grains, that is, upwards of 426 grains Troy. The weight of the wire can be had in that of the nail $11.83 \frac{\mathrm{~T}}{3}$ times. He placed all the feven feparately in the magnetical line for about two days; in which time all of them had loft fome virtue; yet one of them would with difficulty lift the aforefaid nail, which it did fomewhat eafier juft after the touch; and that which had loft moft virtue, would eafily lift a nail of $4 \frac{\text { t }}{s}$: inches long, weighing 306 grains.

Having fuch fuccefs, he procur'd feven round bars of fteel to be made, of the fame fize from end to end : So that they would but juft go thro' a hole, made on purpofe in a plate of iron, and tried their lengths in a ftandard as be did the others; and marked one end of each of them with the corner of a file in this manner, that he might be able to fee the mark, when they were bound together, left any of them fhould be placed with its end the wrong way. Their diameters were about $\frac{3}{3}$ of an inch, and their lengths it $\frac{x}{4}$ inches good meafure. He harden'd and cleans'd thein as he did the wires; but one of them happening to break by a fall in touching, he got it fupplied; and for fear of fuch another accident, he reduced them almoft to a blue colour. He laid them one after another in a trench, planed for them in a long piece of wood about the depth of half their diameter, putting their mark'd ends all one way: He made a hole in the trench a few inches from one end of the piece of wood; and puta pin in it to keep the bars from fliding to the ground, and rais'd the other end, till it was, as he conjectured, in the magnetical line. He then touch'd them with two of his magnets as before, and this he found the beft way of all. When they were finith'd, and armed with proper armour, above half a year after the north pole liffed one pound Troy, and the fouth pole confiderably more. In making one of thefe he met with an odd accident: For, after he had begun to touch it, apprehending it was a fmall matter bigger than the reft, he attempted to mend it on a grinding ftone, whofe axes were direfed about is or

15 degrees from eaft towards north, and from weft towardsy fouth. He was not careful to keep its poles the proper way in grinding, but held the bar fometimes a-crofs to the ftone, which would make it jar; at other times with the north pole: towards the north: Afterwards he touch'd it again with the reft, but could not give it an attraction equal to that of the others. He happened to try with his dial-needle, whether the change of polarity was in the very middle of the bars, or nearer to one end than the other; and in this bar he found feveral polarities contrary to expectation; but how many he was not pofitive. As he held it crect, the bottom was a fouth pole, further up no attraction, the pole changing a little higher (he thinks one third part of the bar's length) a ftrong north pole, and about two third parts up a frrong 1outh pole, and at the top, a ftrong north pole, the middle between each pole not attracting: Whether the jarring on the grind-ftone, while held in a wrong pofition, was, as he fuppofes, the caufe of this irregular virtue, or whether he might at firft, by miftake, touch it the contrary way, he could not pofirively affert; but all his care and labour would not help it by touching: For, as the virtue became ftronger in the ends, fo likewife did the polarities in the other parts of the bar. He thought firft, that he would try to cure it by putting it over wood-coals in a horizontal pofition, with its intended fouth pole directed towards the magnetical north; which he did, and kept it fo till it became blue. Then he took it out of the fire, and cool'd it almoft in the fame pofition; for, he thinks the north pole thereof was elevated. He tried it without retouching, and found it perfectly cured, the polarity regular throughout, and (which he was furpris'd at) attracted full as ftrongly as any of the reft.

He next endeavoured to procure magnetifm in fteel, without the affiftance of the magnet, only the earth's central one.

Finding his arrificial magnets, rightly us'd, would comm'unicate more virtue to other fteel than they themfelves had; and obferving that erect bars had fome virtuc from the earth's magnet; and having alto experienced that iron, which had only tranfient virtue, would, when in an erect pofition, or in the magnetical line, "give a fmall degree of fix'd polarity he ordered nine fteel bars to be made, 0.75 of an inch fquare, and 16 inches long. Some of them happened to be a little lefs; the weight of the heavieft, after it was finifhed, was three pounds Avoirdupois. He made them pretty bright by
grinding; and filed their ends as plain as he could, and tranfverfe to their lengths, by means of a carpenter's fquare; then marked one end of them; and when hardened, he fcowered them bright, and polifh'd their ends very well. He fitted a piece of armour for each end of one bar, and marked the piece, which was for the marked end of the bar, and bound both pieces of armour faft to the fame bar, one at each end: then ftanding with his face towards the weft, and holding the palm of his left hand upward, he placed therein one of the bars without armour, with its marked end northwards, and grafped it faft in the middle, with his fingers on the weft fide, and the ball of his thumb on the eaft fide; where he likewife laid along his whole thumb to keep it fteady: And fo the upper part of the bar was open from end to end. Holding it thus, he rais'd the fouth end thereof, till he guefs'd it was in the magnetical line; and with his right hand holding the armed bar, with the poles of the armour downwards, and the marked end towards the north, deprefs'd to the magnerical line, he placed the pole of the upper armour about four or five inches from the top of the unarm'd bar, and as foon as ever it touch'd the bar, he began with the greateft fpeed poffible to draw it downward, till he was paft the middle ; and from thence to the bottom gradually flower: When it was at the bottom he permitted it to reft there about one or two feconds. After the fame manner applying the pole of the lower armour to the unarmed bar about four or five inches from irs bottom, he drew it upwards fpeedily at firft, flower when above the middle, letting it reft a little at the top. Having upwards and downwards alternately repeated the touch on the fame fide of the bar, he touch'd the oppofite fide thereof, which was next his hand, in the fame manner; and afterwards the two other fides. Then holding the unarmed bar erect, he ufually obfere'd if it had gained any fix'd polarity by holding his fmall needle at the top and bottom of the bar: For, if it had acquired any virtue by the touch, it would attract the needle ftronger at the fame diftance, when the marked end of the bar was held downwards, than when it was held upwards. If he found it had gained any fenfible virtue, he took off the armour from the firft bar, and bound it to the fecond he had touch'd; and after the fame manner touch'd the firt bar with the fecond, as he had touch'd the fecond with the firft. And when by trial with the compafsneedle he found the armed bar had communicated more Vor. IX 2 K virtue
virtue to the other than was in itfelf, he took off the armous and bound it to that which was newly touched, and therewit re-touched that which he had difarmed. In a few repetition of changing the armour from bar to bar, and touching thl weakeit, he procur'd in both of them (without the affiftann of any of the other 7) a fix'd polarity to fuch a degree as th the north pole, or unmarked end of either of them, hee downward, would attract the noth end of the needle, thh much fainter than if the north-pole of the bar had been upwarr and this pofition did not now change their polarities, b, only weaken them : Therefore he now calls their virtue pee fectly permanent. Four or five repetitions more increass their virtue to fuch a degree, as that the fouth pole of one them would lift a ten-penny nail prepar'd; and after two three repetitions more a common door-key of an iron box.low (weighing one ounce and upwards of two fruples Tro: not by the bow, but by its lower end, which was wroug? fomewhat globular and polifh'd. In the laft place he prit cur'd a piece of inch deal, upwards of three inches broad, at feven or eight feet long; in the middle of which, at abo five or fix inches from one end, he made a hole through wi 2 large gimler, into which he drove an iron or feel pin, who length (befides what went into the wood) was fomewhat les than the thicknefs of one of the bars. Then he placed th biggeft bar on the faid board with its marked end clofe to th pin, and its length parallel to that of the board, and with : awl made four fmall holes in the board one of them on eas fide of the bar, about an inch from the bottom, and about th thicknefs of a fix-pence from its fides; and the other tw after the fame manner, about an inch from the top. I drove into them pins of large wire half an inch long, befid what was in the board. The pins were to keep the ba from fliding out of their places in touching. Then removir that, and placing any other bar between the faid pins, wii iis marked end clufe againft the great pin, he placed th
marked eind of he faid bigf marked eind of the faid biggert bar clofe againft the unmarks end of the other, and made four holes on its fides, and dro pins in them as before; and continued fo to do, till the boat was full: It held half a dozen bars. He took care to plac the marked end of every bar, diretted towards the great irc pin, which was to keep them from fiding down to the ground when the other end of the board was elevated to ftand in th amagnetical line. The board flanding with one end on th
ground, and the other leaning againft the wall, at the fouth end of the room, he took the armed bar which had virtue, and placed the armour of its north pole about the middle of the higheft bar, whofe middle he could reach to (keeping the armour of the fouth pole a little upon one fide of the bars, juft fo far as he might be fure not to touch them with that end) and then immediately drew it from thence downward to the bottom of the loweft bar: After the fame manner placing the armour of the fouth pole on the middle of the loweft bar (and holding the armed north pole on one fide, that it might not touch) he drew it upward to the top of the higheft bar, whofe top he could reach. And if the end of any bar were a little under that which it refted againft, he ufually put a fizeable chip under it, that the armour might not hitch in drawing it over the places of their contacts. He ufually touch'd the bars on all their four fides; then took out the loweft (and letting the reft llide gently down to the iron pin) placed it at top, that thofe which were firft at the top, might in their turns take their places in the middle, and be well touch'd. He commonly refted at the end of each bar in drawing (as in the fingle bar above mentioned) when he found thofe on the board confiderably ftronger than his armed one, he took out that which he thought attracted beft, and bound the armour to it, putting the other in its room. Affer feveral repeated touchings, the largeft bar weighing three pound Averdupois, would be fufpended by its north pole to the fouth pole of one of the beft of the others. They did not lift one another, nor attract fo well when their ends were applied centrally, as when applied to one another (as reprefented Fig. 13.) near their oppofite corners. The line m in the end of each bar reprefents the mamer he us'd to mark their intended fouth poles. With one of thefe armed he touch'd a frmall fipare bar of fteel (placed between two of the large ones) whofe length was 2.156 inches, and the breadth of each fide 0.27 or fomewhat more than $\frac{1}{4}$ of an inch, the weight five drachms four grains (i. e. 304 grains) it would afterwards lift an iron $5 \frac{1}{4}$ inches long, weighing four ounces, one drachm, one fcruple, or 2000 grains. 304 can be had 6.578 times in 2000 . So that it lifted above $6 \frac{1}{2}$ times its own weight. With this frall bar naked, he touch'd a fmall dial-ncedle made of neel (the focket in the middile was alfo ftecl, and not brafs, as utiaal) he feafoned it very hard and cleans'd it well, and very carefu'ly, left he thould break it, becaufe fo hard. It weigh'd
not quite four grains, and lifted two prepar'd fix-penny nails, one at each end, while it was held in a horizontal pofition, with its fouth pole towards the north. It alfo lifted a keyy by the bow, as it was held perpendicularly with its fouth pole downwards, whofe weight was one drachm, two frupless, 15 grains good weight (i.e. 115 grains or better) Wherefore: fince the needle weigh'd lefs than four grains, which is thee 29 th part of 116 , we may reckon it lifted full 29 times itss own weight by the force of one pole, the key having no permanent virtue before.
Mr. Savery never faw this communication of magnetifon outdone, by the load-ftone ittelf, as it is commonly us'd : Butt what a good one would do, us'd as he did the fteel, he doess not know; but doubts, unlefs fteel could be made better tham it ufually is, a ftronger degree of attraction therein is fcarcea to be hoped for from the ufe of the beft of load-ftones.

He ulually found the attractive power in fquare bars, cutt plain over, tranfverfe to their lengths, to be ftrongeft, not in the middle of their ends; but much nearer to their corners or fides, and to be greater at one corner or fide than another ; and this not only in fuch as are of touch'd fteel, but in irom ones that have no polarity, but from their pofition. He obferv'd the fame in round bars, if their ends be not convex.

In fome of his large fteel bars (as alfo in fome of the round bars) he found the north pole ftronget, in others, the fouth He does not know what may be the caule thereof. For, tho' he touch'd the weaker end twice as often as the ftronger one, it would fill continue to be fo, when the ftrongeft had been well touch'd before. He imagines it may be owing to fome inequality of the fteel, occafioned by the different degree of heat, taken at the forging; different degree of heat when the finith defifted hammering; different degrees of heat in making the iron into ffeel, or quantity of iron that is made ufe of in doing it, fineners of the iron which the fleel was made of, fome fmall difference in fize, or diffepence in tempering; it being almof impoffible to make both ends equally hard; but that both ends of his might be fo, he had a fire made long encugh to heat their whole length at one and the fame time. He left feveral of the bars on the poard on which they were touch'd; and in the fame pofition io one another, as well as to the earth, for fome months, in
order to fee whether they would lofe any of their virtue; but if they did, it was fo little, that he could not be fure of it.

He likewife tried, whether what he mentioned above concerning load-ftones would hold in five or fix bars, regu-* larly touch'd and placed in the fame manner with refpect to one another; and he found that at fome of the joinings it aniwer'd pretty well, but not fo well at others; commonly beft at the two extreme joints, and worfe at the middle ones. When he held the dial-ncedle at a good diftance from the bars (perhaps fix or eight inches) the attraction was more regular; and the ditierent poles of the two bars at their contact was not fo eafily difcernible; but when he beld it within two or three inches diftance, both the poles difcovered themfelves more or lefs at every joint: The caufe probably may be the want of a better contact; the ends of the bars not being true planes; or it may be partly owing to their conjunct length (tho' he cannot fee how that thould caufe it) or fome irregularity in the virtue of each particular bar: For, it has been oblerved, that very oblong iron, as wire, is capable of having a north pole in both ends, and a fouth one in its middle; or as his round bar above-mentioned, feveral polarities in no greater length than about one foot. His bars were not made of German, but more ordinary fteel, of about four pence per pound.
The Ufe of the Bile in the Animal Oeconomy, founded on an Objervation of a Wound in the Gall-bladder, by Dr. Alexander Stuart. Phil. Tranf. $N^{\circ} 414 \cdot$ p. 34 r.

ONEMr. Menzies was wounded about 3 o'clock in the morning OET. 30.1728 , and died Nov. 5 th in the morning (being the feventh day after he was wounded) in the fortieth year of his age.

Dr. Stuart was call'd Nov. 2. about y o'clock in the forenoon, being the fourth day after the patient receiv'd the wound. The furgeons who attended him from the beginning, being prefent, told the Dr. that his belly was diftended, as the Dr. then faw it, from the beginning, giving the appearance of a tympany or afcites; and it continued at the fame pitch of diftention, neither diminifh'd, nor fenfibly increas'd, to the time of his death. The patient had no ruElus nor flatus upwards or downwards, nor borborygmi, notwithitanding this diftenfion of the belly. He never went once to ftool
after he received the wound, tho' pretty ftrong purgatives and feveral clytters had been given for the three days before the Dr: came ; and tho' no opiate (which might have been fuppofed too have retarded their operation) had hitherto been exhibited:: Nor had thofe purgatives or clyfters the Dr. ordered afterwards, the leaft effect; and yet the patient took what was thought aa fufficient quancity of drink and liquid food. He never flept, or but very little by fhort nlumbers, of about half an hour, orr andour at longeft; and that very rarely, notwithftanding pretty Jarge dofes of opiates were given in order to procure reft, afterr the Dr. came. The wound in the integuments never digefted in the ufual manner; but looked flaccid and fale, almoft with-. out any pus. The urine in very fmall quantity, at moft 2 or 3 fpoonfuls at a time, clear but yellow, as if nightly tinged withi faffron, and without fediment. His pulfe was full, ftrong and even, but not quick. No feverifh heat to be felt in the fkin on। any part of the body. His tongue not hard, rough or black, as in a fever, but of its natural colour, with a filky drinefs, and very little faliva. He was not in the leaft delirious, from the beginning to the time of his death. He had fome flight fits of the hickup the fecond day after the Dr. faw him, and fome few reachings to vomit; fome intermiffions in his pulfe; fometimes i in $10,15,20$, or 30 , a day before his death.

Upon opening the body the abdomen appeared diftended as in a tympany, or afcites, and the fkin of the belly in leveral places tinged yellow as faffron. A triangular wound appeared about 2 inches on the right fide of the navel, the direction nanting upwards, obliquely thro' the integuments: The belly being opened, difcovered the wound to have penetrated thiro' the peritoncum; and the fword had flanted upwards from thence along the omentum, grazing nightly upon it, being fuperficially ruffled, but fo as hardly to be perceivable. A fmall triangular wound appeared in the bottom of the gall-bladder, which had penetrated thro' the membranes inno its cavity, but had no where wounded the liver, nor any of the neighbouring parts. The gall-bladder was flaccid or collapled, containing only a few drops of gall, which by nightly preffing the cystis, flowed out thro' the wound into the cavity of the abdomen. The gute, throughour their whole tract, being diftended in fuch a manner as to be triple the extent of their natural diameters, feemed to fll the whole cavity of the abdomen; fo as to give the outward appearance of a tympany or aficies; but this difzenfion difappeared, and the guts collapfed, upon making feve-
ral punctures with a lancet in their fides; to give vent to the air. The reft of the cavity of the abdomen, which was not clofely filled up by the diftended guts, contained a grofs muddy water or ferum, intenfely yellow, or highly tinged with gall, to the quantity of three quarts, as the Dr. could conjecture without meafuring it. All the guts, and contents of the abdomen, were highly tinged with this yellow liquor; but no other part of the body, out of the contact of this liquor, had the Ieaft appearance of it. No inflammation appeared in any pare of the guts, or in any of the vijgera, which were all found and healthy. The obliquity of the wound thro' the integuments, mufcles and peritoncum, made it impoffible for the external air to enter into the cavity of the abdomen that way.

In order to make fome ufe of this cafe, it muft be obferved, that the great apparatus in the liver and fpleen, two of the largett vifcera in the body, confeffedly defigned for the preparation and fecretion of the bile, and the place of the inteftines, into which it is immediately depofited, afford, indeed, a ftrong argument for the univerfal ufe of it in the animal ceconomy; but do not directly point out what, or how many thefe ufes are, about which there has been a great variety of opinions.
But this fingular cafe, which muft have happened very rarely, if ever before (in which none of the vifcera, but the gall-bladder was wounded, and thereby nothing bur the gall. loft or mifplaced) by fhewing how many functions in the animal œeconomy were impaired or deftroyed by the fole want of it, does at the fame time point out iss ufe and neceffity towards health, or the perfection of thefe functions; and may probably lead to fome indications of cure, in cafes wherein it is known to be deficient, faulty or redundant.

There was no other apparent or affignable caufe of thefe various fymptoms during the patient's life, nor of his death, nor of thofe feveral appearances in the body upon diffection, but this wound in the gall-bladder: And as this wound could not affect any of the parts, nor produce thefe fymptoins in any other fente than as it gave vent to the gall into the cavity of the abdomen, and deprived the cavity of the inteftines and the blood thereof; therefore, from this lofs and mifplacing of the gall, all thefe fymptoms and appearances may juiftly be concluded to arife, and the Dr. thinks may be accounted for from that caufe in the following manner.

1. The abdomen was from the beginning diftended, as in 2 tympany or afcites, and the guts appeared inflated to their utmof diameters.

It is true, that this inflation and diftenfion happens to moft: people a few hours before death, and to all foon after, and arifes from the fpring, or elafticity of the included air, getting the better of jts antagonift fpring, the elafticity of the mufcular fibres of the ftomach and guts, which have no longer the affiftance of the blood and fpirits to contract them, and keep up their periftalic motion. But the inflation and diftenfion, here fpoken of, happened feveral day's before death, and as the Dr. was told, the very next day after he received the wound, tho' the pulfe was apparently ftrong and equal; and confequently, a defect of blood and fpirits was not to be fufpected; and therefore, ir may be juftly concluded, that the influx of the gall into the cavity of the guts is as neceffary to the ftrength of their: contraction, and perfection of their periftalcic motion, as that of the blood and fpirits into their fides; and that the fe three are the conjunct caufes of this motion in health, which would be defective by the total want of any of them. Hence it is, that in fchirrofities of the liver, where the fecretion, and confequently the excretion of the bile is more or lefs defective; andl in the jaundice, where by fome obtruction in the biliary ducts after fecretion, a part of it is forced back, and regurgitates into the blood, and very little of it is thrown into the guts; we obferve an uncommon diftenfion in the guts and coftivenefs; which, if the cafe prove incurable, terminates in an afcites or dropfy in the cavity of the abdomen.

It may alfo be worth while ro enquire, whether what is commonly called an hyfteric, or nervous colic, generally attended with a leffer degree of fuch like diftenfions, with flatus's and borborygmi ; wherein the animal firits are fo much and only blamed does not partly arife from a fluggifl fecretion and excretion of the bile, occafioning a defect in its quantity; or from is acrimony and great vilicofity, occafioned by its ftagnation in the gall bladder; or from both thefe together, as well as from a defective or unequal diftribution of the blood and fpirits in the parts affected. In confirmation of this, the Dr. has generally obferved, that at fome time or other in the cure, a confiderable evacuation of porraceous vifcid bile, brought away, either by art or nature, as well as a gieat profufion of pale urine, compleated the cure for that time. The vomiting of porracecus bile, very common in fuch cales, proves the fame;
and the Dr. believes, it is generally allow'd, that the ferruginous, porraceous, and black colour of the bile is owing to thorter or longer ftagnations of it, chiefly in the gall bladder ; which the fedentary life of fuch as are fubject to thefe colics, will fufficiently account for, even if there was no other crror in their way of living; and whoever has obrerved the high yellow colour and contents of the urine in a jaundice, arifing from a redundancy of bile in the blood, will readily acknowledge, that an uncommon watery palenefs in the urine, where no more than the ufual quantity of fluids has been taken down to dilute it, Shews a defect of bile in the blood; and the Dr. believes it eafy to account for the flatus's, borborysmi, inverfions of the periftaltic motion, the pila biferica, palpitations, fcotomia. vertigo, and other fymptoms of thefe diftempers, which are called nervous and hyfteric from the fame caufe: And hence it is, that bitters and fteel, known deobftruents of the liver, and correctors of the bile, with gentle chologogues in very fmall dofes, are of fo much ufe in fuch cafes; tho' it be certainly true, that all ftrong ftimulating purgatives are very hurtful and improper.
2. There were no ructus's, or flatus's upwards or downwards, nor borborygmi, notwithifanding this diftenfion of the belly and inflation of the guts.
This, the Dr. thinks, fhews very plainly, that the guts had loft all motion, and were become paralytic by the total want of the bile only, as much as if their nerves had been encirely obftructed : For, had any motion remained in them, whether the natural and tegular periftaltic motion, or a preternatural convulfive one, their contraction either way, would have propelled the included air from one place to another, and occafioned borborygmi; or expelled a part of it upwards or downwards, when nature had fo much need of it to relieve the diftended gurs, and art had contributed to that intention by clyfters and purgatives : Which ferves to illnftrate what has been faid above, concerning the defective and convulfive motion of the gurs in byfteric cafes; where, thro' a defea in the quantity or quality of the bile; or from both thefe, the motion of the guts becomes defective, irregular or convulifve; but is not entirely loft thro' a total want of it, as in this cafe.
3. The patient never went to flool after he received the wound; and the fronget purgatives and clytters had no effect.

This likewite feems to be owing to the want, or totallofs of the perifaltic motion; and plainly hews, that the ftrongelt
VoL. IX $_{4} \mathrm{~N}^{2}$

82

MEMOIRS of the

purging fimulus bas not the power to reftore it, without the affiftance of the gall: For, had it been in any degree reftored, the belly would have fallen proportionably, and fome difcharge of what was lodged in the fift paffages would have followed. If then the power of purgatives depends upon the co-operation of the bile, ir will follow, that where it is moft active or redundant, their operation will be, coteris paribus, greateft; and where it is unactive or deficient in quantity, they will have proportionably a lels effect. Tho' it be true, that a quantity, or morbid acrimony of the bile, by a ton ftrong and violent irritation, will bring the inteftines into. fuch fatms, as to ftop all evacuation by ftool; and the ftrongeft purging fimulus added thereto, does only increafe the fpafms and coftivenefs; as in bilious colics, which are always attended with exceeding? coftivenefs, unconquerable by the ftrongeft purgatives, if they be not joined with opiats, to allay the fpafms, and blunt the acrimony of the bile. The patient took what was thought a fufficient quantity of liquid food and drink; but if the elatticiey of the guts and their periftaltic motion were loft, it is eafy so prove that none of his food or drink could enter the lagteals for want of the periftaltic motion; and therefore that he died flarved. All that have feen live diffections, which are intended to thew the nature of the perifaltic motion, and the courle of the lacteals, muft have obferved, that the guts have an alternate fylole and diafole, or contraction and dilatation, called the periftaltic motion, the fuperior fection contracting itfelf, while the immediately inferior fection is dilated; and this motion is carsied on in feveral parts of the guts at the fame cime; and the contracing part, by expelling the blood and chyle out of its fides, in its contraction, looks pale, while the parts dilated look florid, and the veffels full of blood and chyle.

Now the part contracting muf neceffarily force the chyle from the groffer parts of the aliments towards the inner furface of the guts; where the perforated capillary extremities of the lacteals in the villous coat are ready to admir, or rather to abforb it by attraction, as far as the larger and vifible branches of the lacteals on the coats of the guts, into which it eafily dows in the time of dilatation or diaftole, which at that time expands or unfolds thefe veffels for its cafy reception; from which it is farther propellid by the next fyitole, or contraction, into the primary or firti order of the lacteals in the mefentery; and by the fame repeated impulfes of the contracting fections of the guts, is forced farther thro' the fecond order of lacteals
in the mefentery, into the receptaculum commune, and thoracic duct; affifted by valves, and promoted by the inceffant motion of the mufcles, and of all the contents of the abdomen and thorax in refpiration, it is at Jength thrown into the fubclavian vein for a perpetual recruit of the blood in a healthy flate: But if the mufcular fibres of the guts have loft their periftaltic motion, as in this cafe, then the expreffion, abforption and progrefs of the chyle defcribed cannot fucceed, the blond muft be deprived of its recruit, and the perfon die ftarved; which feems to have been this patient's cafe, and will fufficiently account for the reft of the fymptoms above recited. I. His want of lleep, and the inefficacy of opium to procure it, might be owing to a want of recruit of chyle in the blood: As we fee that fuch as live faringly feep very little; and fuch as feed plentifully, require by fo much a greater number of hours to neep; and in all chronical cafes, where the body ceafes to be nourifhed, the feep alfo fails, and opiats have but little effcacy: Whereas in children, where a great part of their food goes towards both nourifhment and growth, the greater part of theirtime is fpent in fleep. It may, indeed, feem difficult to conceive how a want of reft hould enfue fo foon after the accident. But confidering that the lofs of one meal in a day, efpecially of fupper, to fuch as have been accuftomed to fup, has occafioned fewer hours reft in the following night, it will follow, that fuch perfons require at leaft fome fimall recruit once in 6 or 7 hours, in order to reft their ufual number of hours; and therefore in this patient's cafe, where all recruit muft have ceafed foon after the accident, he might be fenfible of the impairing of his reft in 6 or 7 hours after it; and thofe about him might well obferve the increale of that fymptom, at leaft in the following night.

Another difficulty arifes from the obfervation of fwallows, tortoifes, ξc, who fleep moft in winter, when they eat and drink nothing. In anfiwer to which, there feems to be no pariry between the natural conflitution of their blood and humours, and that of men: To thefe and luch like animals, with regard to recruit and nourifhment, action and reft, the fpring and fummer are as one day, and the winter as one night; and their blood and humours feem to be adapted, not only to bear, but even to require fuch long periods of reit and action. And probably there is as little parity between the crafis and conflitation of the blood and humours of a healthy perfon, and of rhole in toporous and cataleptic difeafes, who are re-

84 MEMOIRS of the

ported to have nlept for weeks or months without any kind of fond: And therefore, where the crafis and confiftence of the blood and fpiris are nearly the fame, that is, ceteris paribus, he, who feeds and is nourifhed mott, will fleep longeft, and \grave{e} contra. The pofition here advanced is farther confirmed by the inefficacy of the opiates given, they being capable of entering into the blood thro' the pores of the ftomach in contact with them ; by which quick paflage they have been obferved to procure rett foon after they have been applied outwardly, or raken down into the ftomach, as in this cafe they may juftly be fuppofed to have done; tho' for the reafons above-mentiond, neither they nor any thing elfe could pafs by the lacteals: But as the aliments could not pals that way, siz. by the pores of the ftomach, nor by the lacteals into the blood, there could be no recruit nor nourifhment; and therefore, tho the opiates enter'd into the blood by the pores of the ftomach in contact with them, they could not procure reft. Thus it would feem probable, that opiats produce their effect by detaining the chyle crude longer than ufual in the mafs of blood; and thereby pro. long fleep beyond the ufual time; and that they are ineffectual, where there is no chyle in the blood to be detained. But their power of retarding or fupprefing all or moft of the fecretions and excretions; their palling or obtunding the appetite; their enabing one to fafl long, and fupporing one in journeys and Babour for a long time without food (effechs well known to the Iurks and Afotics in their journeys thro' deferts, $\mathcal{E}^{\circ} c$.) Thele and fome orher known effects of opium, very much favour this opinion. 2. The want of pus in the wound was probably owing to a want of reciuit of chyle in the blood; and the flabbinets and palenefs of its lips, to a fhrinking of the parts for want of daily nourimment. 3. The fmall quantity of urine was probably owing to a want of recruit of fluids from the firft paffages: For, thefe in a healthy fate find their way to the urinary pafiages very foon. The flight tincure of yellow, which it had, muft have been from the bile fpilt in the abdomen, and filteated thro the duplicature of the peritoncum, and bortom of the bladder: For, it could not be fuppofed to derive its colour from the blood, into which no bile could now enter by the common way. 4. The want of foliva and the filky driness of the tongue, leem to have been owing to the Same caute, namely, a want of recruit of fluids in the bluod, and a lufs of fo much of them as fell into the abdomen. 5. If it be fuppofed that fuch a'tmall wound thro' the integunents roducing a fever; then the patient's not having any fyimptoms f a fever, muft be owing to a total defect of bile and chyle in he blood, none of which could enter the lacteals for want of the periftaltic motion, as has been faid. Laftly, the few fits of hickup, reachings to vomit, and intermiffions in the pulfe in declining and dying perfons, feem to arife not only from a de-w eet, and therefore, an unequal diftribution of the blond and pirits, but chiefly from the corruption and irritating acrimony of them, as the immediate caufe of death in this and moft other cafes. Which fhall be farther explained anon.
Here it may very reafonably be objected, that the ductus bepaticus would carry a fufficiency of bile, for the ufes of the animal ceconomy, into the cavity of the inteflines, tho' none came by the ductus cyfficus, and nature feems to have provided the ductus bepaticus for this purpofe, that if any obilruction or defect fhould happen in any of thefe fecretory channels, the fecretion and excretion might go on, for the benefit of the ceconony, in the other; as nature has provided two kidneys, and double organs of fenfe for the fame reafon: But the effect will not be the fame in a wound, which is the reverfe of an obftruetion; becaufe by a perpetual evacuation thro' if, fuch a revulfion and derivation is made, as drains and deficcates all the neighbouring parts, and either leffens or entirely fruftrates the fecretion and excretion by them: And this we find to be true, where the fecretory organs and ducts, concerned in the different fecretions, lie at a great diftance from one another; as in the diabetes we generally obferve a very great deficcation of the falival glands, a defect of faliva, and perperual thirit; and fweating and loofenefs leffen the fecretion by urine; an iffue drains and emaciates the neighbouring parts; and it is mechanically demonftrated by Bellini, that the flux of blood and of all the humours, will be moft and ftrongeft towards the part where the refiffence is taken off, as in bleeding; to which this perpetual flux of bile thre' the wounded gall bladder feems to have a great affinity; and therefore would probably promote the afflux of blood and fecretion of the bile fo much and fo firongly towards the veftels, glands and ifcretory ducts, leading to the cyftis, as very much to leffen, or entirely hinder the fecretion by the ductus bepiaticus into the guts by that channel.

A nother ohjection is, that as the guts and other contents, and even the mulcies and integunents of the lower belly, were highly tinged by the bile, it is probable that fome of it had
got into the cavity of the guts, where it might by its fimulus. keep up the periftaltic motion, and by the lacteals get into thee blood, as fome of it got into the bladder in that manner, and tinged the urine. It is not unlikely that this might happent when the bile came to be very redundant in the cavity ; but im paffing thro' the interftices of the veffels and fibres of the guts, as thro' a filtre, the groffer, faline and fulphureous particles of it, which are the moft pungent and active parts, muft have been left behind ; which the muddy thicknefs as well as deepnefs off the colour, found in the cavity of the abdomen, compared with the tranfparent clearnefs of the urine, of a much lighter yellow, colour, without fediment, feems to prove: And it is not likely, That fuch a fmall quantity of filtrated bile, as may be fuppofed to have paffed that way, deprived of all its active particles, could either as to quantity or quality be fufficient to affif in any function of the animal ceconomy: And in fact, if any paffed that way, it appeared plainly infufficient to promote the contraction and perifaltic motion of the guts, which continued preternaturally diftended, from the beginning to the time of the parient's death.

It has alfo been objected, that an animal, that dies farv'd, dies delirions and feverilh; the experiment having been made on cats and dogs: And therefore this patient, who had no fever, nor delirium of any kind, cannot be fuppofed to have died ftarved. In anfwer to this, the Dr. will not difpute thefe facts, efpecially the experiments upon cats and dogs, tho' he has not made any himfelf, nor does he remember to have bad any juft or accurate account of the fymptoms of fuch as have died of hunger and thirft, in fieges, and at fea; tho' there have been fereral infances; and no notice, that the Dr. knows of, has been taken of their having died mad, delirious or feverifh, tho' thefe fymptoms are fo remarkable and affecting. Bur fuppofing thefe facts, thele cafes will differ very much from this before us: For, an animal ftaryed to death purely for want of food, has the gall fowing contimally into the cavity of the inteftines, unmixt and undiluted with chyle, and from thence by the lacteals into the blood: So that in a few days this acrimonious juice muft become more redundant there, than any other humour; which joined with the conftant attrition of the globules in circulation, muft fivon reader the blood very acrimonious, rancid and alcaline; that is, muft reduce the whole to a mafs of putrefaction, capable of timulating the brain and nerves; fo as to produce a fever, delirium, or madnefs: But in the cale under confidera-
tion, no gall could enter into the blood: And therefore, this degree of putrefaction, and its effects, could not happen; tho ${ }^{\circ}$ it muft be owned, that thro' a want of recruit and dilution, a lower degree of putrefaction of the blood and humours muft have followed, even in this cafe, from the continual attrition in circulation; fuch at leaft as was fufficient to render the whole mats in a few days unfit for any of the ufes in the animal ceconomy; and therefore, may be juftly fuppofed to have been the immediate caufe of death : For, all the paffive principles, or materials of putrefaction, being actually in the fubftance of the blood, and all the active principles' of heat and attrition being at work upon it to produce this effect, it could not fail to be brought about in a few days; and the fame would happen to all animals, if what is effete, corrupted or altered, fo as to be unfit for the ufe of the animal, were not continually carried off, by the emunctories, and a frefh recruit daily fupplied from thie prime vice: which evacuations and fupply being kept up in their due quantity and proportion, do effectually prevent all putrefaction and acrimony, and keep the blood and humours in heir natural temperature. It is not then a defect in the quanity of fluids that kills an animal in fafting, but a poifonous acrimony, which the blood and humours naturally contract, for want of a frefh recruit and equal evacuation. Thas in chronical diftempers, where the patient appears extenuared and exhaufted, the quantity of the fluids is certainly very fmall, yet fufficient to maintain life for fome months or years, being kept in fome degree of fweetnefs or proper temperature, by a certain proportion of recruit and evacuation: But where the recruit is entirely withdrawn, the evacuations will be proportionably leffened : And therefore, the quantity of fuids may remain much the fame, but the quality will alter, and putrefaction, for the reafons above-affigned, muft rake place, and be the immediate caufe of death, even long before the mafs of fluids can be much diminifhed in quantity, as in the cafe before us; which leads to the anfwer of another difficulty, vi=.

How the pulfe fhould continue full, ftrong, and cqual fon feveral days, while the patient was in a ftarving condition, and the blood had no recruit from the prime vie. This, it is true, would be very unaccountable, if the watte of the blood and hus mours were foppoied to continue at the fame beight, as before the accident, and the evacuations by the emunctonies were the Came as in perfect health. In this manner the contents of the blood.veffels would be foon wafted and exhaufted. But Sancto-

88

MEMOIRS of the

rius's oblervations and experiments fhew, that the daily re cruits and evacuations, keep pace with each other, and ares nearly equal in 24 hours in healthy fare: And therefore; where the recruits are plentiful, the evacuations will bea equally fo; and where thofeare fparing, the evacuations aree fmall; or where the balance is caft too much on either fide, fome indifpofition or diftemper muft follow. There is now exception from this rule, but in children, a part of whofe nourifhment goes to accretion; therefore in the cafe before us, the recruit being entirely wirhdrawn, the evacuationss mut have been little, of nest to nothing : And therefore; the quantity of the blood and circulating humours would remain much the fame, and keep up the fullncis, ftrength and equality of the pulfe for feveral days, till the critical putrefaction and colliquation of the blood above-mentioned, on the fifh or fixth day, rendered it unfit for a regular circulation, and produced intermifions in the pulfe, weachings to vomit, and bickup; all of them being local convulfons, and the effecis of corruption, acrimony, irritation, and an unequal diftribution of the fluids, which terminated in death the beginning of the feventh day.

The fum of whathas been faid is, that in this cafe, very little; if any, bile enter'd into the inteftines; and that ineffectual ; and none at all into the blood. And as there was no apparent defect in any part of the body, nor any wound that could have been either dangerous or deadly, in any other refpeet than as it gave occafon to the lofs and mifplacing of the gall; it is therefore evident, that all the fymptoms, and the patient's death, were entirely owing to the lof's of this ufefull juice; which it feems is fo necefary to all parts of the animal aconomy, that this perion could not live fix days withour 1.

The prafical inferences, that feem to flow by neceffary confequences from this obfervation, are. I. That the periftaltic morion of the inteftines is as much owing to the influr of the bile into their cavity, as to the influx of the animall frimes and blood into their fides; and therefore, that the bile is to be looked upon as one of the prime movers in the aninal ceconomy, by which the elaftic fprings of the natural motions, to wit, the mufoular fibres of the guts are fer to wotk; upon whofe motion all the fubfequent vital and animal motions do fo far depend, that none of them can be long in perfection where it is mperfeck, nor titeft many days where
it is entirely wanting. 2. This prime motion is entirely loft by a total want of bile; proves nugginh by a defect in its quantity; becomes irregular or convulfive by a great redundancy or morbid acrimony of it. From whence feveral diftempers, that are call'd nervous, may arife, and are more likely to be cur'd by correcting and evacuating the redundant or faulty bile, and removing obftructions in the liver, than by moft medicines taken from the common clafs of nervines. 3. That the efficacy of purgatives depends upon the co-operation of the bile. And thetefore it is probable, that the difference, of conftitutions, at equal ages, with refpect to purgatives, depends more upon the quantity and quality of the bile, than on the bulk or weight of the body; quantity of the blood, or other circulating humours;, 4. It allo appears; that the nourithment and accretion of the body do in fome meafare depend upon a due quantity and proper quality of this juice, without which the blood and circulating humours could not be recruited from the prime vies: And therefore, that defects in it may frequently be the caufe of a marafmus; or wafte of the body, where it is little fufpected: Which may ferve to point out the merhod of cure in fuch cafes. 5. This obfervation feems to lead to the knowledge of the immediate caufe of natural reft or fleep in a healthy fate; to wit, a certain quantity or proportion of freifh chyle in the blood; the want of which, from whatever caufe, will occafion watchfulnefs, or fome degree therenf. And this may ferve to point out the immediate effect and confequences of opiats; whence may be gathered how far, and in what cafes they may be effectual and ufeful; and in what circumftarices they may be ineffectual, ufelefs or hurtful. 6. That a due quantity of aliments at proper intervals of time, is neceffary to keep the blood and fluids in their natural temperatue and fweetnefs; and to preferve them from acrimony and purrefaction: And this will be true in all diftempers, as well as in a ftate of health; and is againft the practice of fuch as pretend to ftarve away diftempers, or to deny a due quantity of drink and liquid food to the fick, efpecially in fevers, where the want of this recruit will tend to increafe the acrimony or putrefaction, whence the malignity of moft fevers arifes. 7. That pus in a wound or ulcer is the produat of chyle, and not of the blood or ferum (which has, it is true, been the receiv'd opinion, tho' fupported by no other proof than the fimilitude from pus to chyle) and as a great redundancy, as well as a VoL. 1X. 3
defect of pus, does fometimes retard the cure of a wound or ulcer, this may ferve to thew by what means it may bee increas'd or diminifh'd, to anfwer the intentions of the artift This alfo makes it appear probable, that a great redundancyy of chyle difpofeth the body to purulent, fuppuratory, ancd fcrophulous diftempers; and feems to indicate the forbear: ing the ufc of fuch forts of food as afford a rich, grofs, ons plentiful chyle, and the adminiftering fuch medicines, as mayy ftrengthen fanguification, and the other affinulating powerss to affimulate and thereby confume it; the fanguification and affimulating powers being manifeftly weak, as the chylification feems to be frong in all fuch cafes. And this feems to be the real fon why in adults as the fanguification grows ftronger; and itn age, as the voracioufnefs of the apetite, too common in youth declines, thefe diftempers do ofren decreafe, and at laft wean out of themfelves: Which fhews what affiftances art ough to contribute to bring about the fame effect in a lefs time.

The Dr. omitted to open the ftomach and guts, in order tco view the ftate of their contents, where the gall was entirely wanting; which might have given fome light to this obferr vation: But he is apt to think, that as moft of the patient food was liquids, the alterations would not have been verjy remarkable.

A Lunar Eclipfe obferv'd at Lisbon Feb. 2. 1730. N. Ss by F, Carbone. Phil. Tranf. N° 414. p. 363 . Tranf. lated from the Latin.
True time
P. M
H. M. S.
$\begin{array}{lll}13 & 25 & 0 \\ 40 & \text { The fenfible penumbra begins. } \\ & \text { It becomes denfer. }\end{array}$
58 - It becomes very denfe.
I4 345 The beginning of the eclipfe; doubtful.
432 Now it feems to begin certainly.
6 o Now the moon's difk appears eclips'd.
947 The fhadow touches the northern parts 0 Terra pruince.
1025 It comes to Harpalus.
1 I 6 At the middle of Harpalus.
16 If It touches the north thore of Simus Iridum.
18 34. Heraclides entirely cover'd.
2238 Plato begins.

True time
P. M.
H. M. S.

I4 $23 \quad 50$ The middle of Plato covered.
$24 \quad 54$ Plato entirely covered.
29 The fhadow at Ariftarcbus.
3 F 5 At the middle of Ariftarchus.
33. 42 Ariftarcbus entirely hid.

3455 Arifoteles begins to be covered.
3624 The middle of Arifoteles is cover'd.
3749 Arifoteles, entirely covered.
399 Eudoxus.
$43 \quad 57$ The fhadow touches Endymion and Ariftyllus at the fame time.
4453 The middle of Endymion covered and Ariftylu entirely covered.
$55 \quad 48 \quad$ Endymion entirely covered.
4827 Timocbaris; the shadow ccmes to the fhore of Mare Jeremitatis.
5550 To Lacus fomniorum.
5630 Ariftarobus begins to emerge.
5820 The middle of Ariftarcbus emerged.
Arifarcbus entirely emerged.
425 Po $\int 2 d o n i u s$ beginsto be covered.
II 35 Lacus fomniorum entirely hid, and the half of PPoffidonius.
13 12 Timocbaris begins to emerge.
16 Timocbaris entirely emerged; and \mathcal{P}_{1} ffidonius entirely covered.
2754 Archimedes entirely emerged.
3049 Poffidonius begins to emerge.
3258 Heraclides entirely emerged.
343 Poofidonius.
4046 Harpalus.
4621 The beginning of Plato emerged.
47 16 The middle of P lato emerged.
$48 \quad 33$ Plato entirely emerged.
5055 Lacus Mortis.
5237 Arifoteles begins to emerge.
5429 The middle of Ariftoteles emerged.
5658 Arifoteles entirely emerged.
I 48 The beginning of Endymion emerged.
3 I4 Endymion entirely emerged.

True time
P. M.
H. M. S.

164 The end of the eclipfe.
The duration of the eclipfe $4^{\text {h }} 59^{\prime} 28^{\prime \prime}$.
The middle of the eclipfe 15416
The quantity of 3 digits 20^{\prime} to the north.
Eclipfes of Jupiter's Satellites at Pekin. 1727, 1728. Phill
Tranf. No 414. p. 366. Tranlated from the Latin. Satcllite I.
D. H. M. S.

Satellite II.
D. H. M. S.

3927 Immerf	Nov. Dec.		4	40	45	in the morning in the morning
		4	5	2		g.
Enierfions.		11	7	37	42	ng.
	2	18	10	11	13	the even!
		26	-	47	39	the r
1728		5	4	42		the evening.
		12	7	16	16	the evening.
Emerfions		19	9	51		
		13	7	3	45	
		20	9	46		the evening.
merion	Oct.	30	3	34	10	de

Satellite III.

1927 D. H. M. S.
Begins to $\left\{\begin{array}{lllll}\text { Nov, } & 21 & 7 & 57 & 0 \\ \text { in the evening: }\end{array}\right.$ emerge.

1728
Total immerf. Fan. $\quad 3 \quad 5 \quad 43 \quad 40$ in the evening. Firft emerfion $\quad 7420$ in the evening.
Total immerf, $10 \quad 9 \quad 42 \quad 52$ in the evening,
Firft emerfion $1142 \quad 20$ in the evening.
Total immierf: $\left\{\begin{array}{cccccc}F e b . & 22 & 9 & 42 & 30 & \text { in the evening. } \\ O C F . & 9 & 6 & 6 & 30 & \text { in the morning. }\end{array}\right.$
A Lunar Eclipfe at Pekin Aguft 19. 1728. N. S. Phild Tranf: $\mathrm{N}^{\circ} 4^{1}$ 4. p .368 . Tranfated from the Latin.

Correct time.

Phafes

H. M. S.

A little after the eclipfe, the moon's diameter was found to be $30^{\prime \prime} 50^{\prime \prime}$.
$1054 \circ$ Now the penumbratinged the parts of the moon that were firft to be eclips'd.
II 2 o The beginning of the eclipfe a little before Cleoftratus.
${ }^{3} 3$ - The fhadow touches Arijfarchus:
1430 Ariftarchus entirely covered.
1520 The fhadow touches Plato.
16 jo Plato entirely covered.
2220 The Shadow touches Galilaus and Timocbaris.
Correct

Correct time
H. M. S.
11. 2320 The fhadow touches Pytbeas.

2630 Keplerus.
2730 Arityllus.
3 I 30 Hevelius, Copernicus, and Eudymion almoft at the fame time.
36 20 Ricciohus.
${ }_{3} 815$ Poffidonius,
40 10 Grimaldus and Mercurius.
4 I 40 Manilius.
4340 Merielaus.
47 ○ Plinius and Geminus.
52 - The fhadow at the moon's center; Grimaldus being entirely covered.
$s 420$ The fhadow touches Mare The fouth apex of Crijum.
5640 Ariadcus the edge of the
57 o Proclus Shadow.
$\mathrm{I}_{2}{ }^{\circ} \circ$ When the moon culminated, a ftreight line, paffing thro' the middle of $\mathcal{T} y c b o$ between Munofius and Prophatus, coincides at Copernicus with the plane of the meridian.

- 30 The fhadow touches Pro. acutum. ${ }^{2}$ Grimaldus

430 Cenforinus and Taruntius. Semerging
6 O Mare Crifum cntirely covered. Svery flowly
15 30 The fladow touches S. Theopbilus.
1630 S. Cyrillus.
2130 Langrenus; Grimaldus having entirely emerged.
2515 The fhadow touches S. Catbarina; Ricciolus having entirely emerged.
3^{1} - About the middle of the eclipfe, its quantity meafured with a micrometer, was almoft fix dig. and $\frac{x}{2}$ after the Cbinefe manner, or 7 dig, and $\frac{3}{4}$ after the European manner,
34 - Hevelius entirely emerged.
36 ○ The fhadow at Fracaforius.
12430 Galilcus entirely emerged.
4630 Lansbergius.
52 - Keplerus.
${ }_{13} 1$ ○ Arifarcbus.
2 - Copernicus begins to emerge.
5 - Copernicus entirely emerged.
The

Corre Ct time
Phafes
h.

13 10 The edge of the fhadow at the moon's centre.
1130 Pytbeas emerged.
15 O Eratofthenes and S. Cyrillus.
20 O Iimocbaris and S. Theopbilus.
2220 Ariadeus entirely emerged.
25 O Manilius.
29,30 Ariftyllus.
32 ○ Plato.
33 ○ Cenforinus.
34 - Promontorium acutum.
38 - Plinius and Langrenus.
14 - The end of the eclipfe near Berofus.
At the end of the eclipfe the moon's diameter was found $30^{\prime} 38^{\prime \prime}$.
During the eclipfe thick vapours frequently coming on difturbed the face of the moon : So that her macule and the edge of the fhadow could not be diftinctly difcerned. This chiefly happened before and about the end of the ecliple.
Occultations of feveral fixt Stars, obferved at Pekin in 1728. Phil. Tranf. No 414. p. 370. Tranlated from the Latin. Of AN. 2. 1728 Mane the moon covered the ftar c of Leo. The immerfion was at $2^{\text {n }} 35^{\circ} 20^{\prime \prime}$ in a right line paffing thro' Tycbo and S. Theopbilus. The emerfion was at $3^{h} 20^{\circ}$ $40^{\prime \prime}$ in a right line paffing thro' S. Theophilus and Eratoftbenes.
fan. 22, early in the morning, the moon paffed over the Pleiades.
h. , "

At I 025 Taygete immerged behind the monn, in a right line with Bullialdus and Abulfeda.
I 930 Celono, a few leconds diftant from the cufp of the fouthern horn, in the right line from Tyako thro' Clavius, immediately difappear'd, being abforbed by the exceffive guctuation of the lucid limb of the moon.
I 1824 Sterope immerged, in a right line with Butlialdus and Fracaforius.

- 25 56 Maia immerged, in a right line from $\mathbb{I y}$ cbo thro' Longomontanus.

MEMOIRS of the

The emerfion of none of them could be obferved, by reaforis of the exceffive fluctuation of the moon's light amidft the vapours.
Fan. 29 , in the evening, the moon covered the ftar τ of Leo. The immerfion was at $9^{\text {h }} 27^{\prime} 53^{\prime \prime}$, in a right line with Galilleus and Lansbergius; and the emerfion at $10^{h} 24^{\prime} 17^{\prime \prime}$ in a right line with Macrobius and Sofigenes.

March 2I, in the evening, the moon covered γ of Cancer. The immerfion was at $8^{\mathrm{h}} \mathrm{I} 4^{\prime}$ in a right line thro' Copernicus and the northern edge of Langremus. The emerfion was not obferved.

May 24, early in the morning at $\mathrm{I}^{\mathrm{h}} 5 \mathrm{I}^{\mathrm{\prime}} 30^{\prime \prime}$. the moon abforbed τ of Scorpio next to Burgius. The emerfion was not obferved.

Sept. 14, in the evening, the moon covered n of Capricorn. The immerfion was at $8^{\text {ha }} 11^{\prime}, 20^{\prime \prime}$ between Seleucus and Cardawus. The emerfion at $9^{\text {h }} 37^{\prime} 30^{\prime \prime \prime}$ a little below Langrenus.

Sept. 19. in the evening, the moon covered of $P_{i} \int_{\text {cium. }}$. The immerfion was at ' 8 h $43^{\prime} 45^{\prime \prime}$ in a right line thro' Tycho and Langrenus. The emerion at $9^{15} 5^{\prime} I^{\prime \prime}$ in a right line with Tycho and Keplerus.

OCT. 28 , in the morning, the moon covered Regulus or cor Leonis. The immerfion was at $\mathbf{1}^{\mathrm{h}} 39^{\prime} 50^{\prime \prime \prime}$ in a right line thro ${ }^{3}$ Arifarchus and Galfendus, The emerfion at $2^{\mathrm{h}} \mathrm{II}^{\prime}$ in a right line thro' Ariftarcbus and Cardanus.

Of the Veins and Arteries of Leaves; by Dr. Nicholls. Phil. Tranf. No 4^{14} p. 371.

BY a ieiter from Dr. Fuller in Holland, the Royal Society, was informed, that Profeffor Ruy \boldsymbol{y}_{6} had in diffecting leaves obferved fomething analogous to the veins and arteries in animals; but without explaining in what manner thefe different veffels were difpofed, or by what means they may be didifinguifhed from each other.

When Dr. Nicholls examined the collestions of Frederic Ruyfob and Albert Seha at Amferdam (in both which was a grear variety of diffected leaves) they made no mention of fuch a difcovery; tho in a leaf from the collection of Ruy/cb he could with a glafs obferve the fibres to be double towards the edges of the jeaf; which at that time he imagined to be an unnatural divifion of the fibres, as in decayed fticks.
In the mean time Albert Seba having communicated to the Rojal Society the method of diffecting leaves, the Dr. fepa-

Royal Socyety.

fated the pulpous from the fibrous parts of feveral leaves after Seba's method; when upon examining them by glafles, and in water, he found that each fibre was naturally feparated into two diftinet fibres by a thin firatum of the pulpous fubftance; and that this feparation was continued thro' all the fibres, and ftem of the leaf, fo as to form two diftinct planes of fimilar network.

Tho' this duplication of the veffels in leaves feems to point out an analogy between them, and the veins and arterics of animals; yet the Dr. fees no probable means of gueffing, which are the arterial, and which the venal fibres.

In order to illuftrate this matter, as it appeared to him, he prepared two leaves; the one of an apple-tree (as reprefented Fig. I4. Plate IV.) the other of a cherry-tree (Fig. 15.) in which, as well the feparation of the fibres and ftem, as the pulpous fubftance, by which they are naturally feparated, are very obvious.

Uncommon Anafomofes of the Spermatic Veffels in a Woman; by Dr. Mortimer. Phil. Tranf. ${ }^{\circ} 415$. p. 373.

1R. Mortimer, being at Paris in 1723, light on a female fubject, where the anafomofes of the fpermatic arteries and veins were as large as the fpermatic veffels themfelves: So that the arteries being injeced with a grofs mixture of wax, tallow and vermillion, and the veins with the fame, only tinged with fmalt ; the injection ran out of the artery into the vein, and on the other hand out of the vein into the artery: So that where one veffel entered the other, the matter injected was tinged purple. It is to be noted, that the arteries were firf injected with the red, and the veins afterwards with the blue matter.
What appeared moft remarkable in this fubject was, that on the right fide were two fpermatic arteries A and B (Fig. I6. Plate IV.) One A, arofe from the very angle, formed by the emulgent and the trunk of the defcending aorta C , which, contrary to the common courfe ran under the Cava; and foon after it was got beyond it, fent our a lateral branch, or Anafomofis, defcending obliquely EF, into the fpermatic vein G, thro' which the red matter penetrated into the vein; which afterwards, filled with blue, became of a purple colour all about the orifice of this veffel at F, which feems to confirm Euftachius's delineations, and fhew that they are no fiftions. This artery A then defcended as ufual to the right evarium H .
Vot. IX. 3

98

 MEMOIRS of theThe other right fpermatic artery B arofe as ufual out of the: trunk of the corta; but at about half an inch from its rife, it fent out an anafomofis 1 K , afcending obliquely into the bodyi of the Cav* D, thro' which a large quantity of the red matter paft; fo as to tinge purple a very broad place at K in the Cava.. About an inch below this orifice was another anaftomofis $\mathrm{L} \mathrm{M}_{2}$, thro' which the blue matter penerrated out of the vein, and made the contents of the artery purple at L . 'The right fper. matic vein had only this one anafomofis ML ; in all other refpects as ufual.

On the left fide was but one fpermatic artery N, and onee Ipermatic vein O, which inclofed, as ufual, in a common integument, made their way to the left ovarium P. Only the artery N took its rife out of the body of the dorta near the angle, formed by it and the left emulgent artery; then afcending between the emulgent vein and artery, turned in an arch at Q over the left emulgent vein; and fo joined the left fpermatice vein as ufual, which rofe out of the left emulgent vein, as it often happens.

On this fide there was one thing very uncommon, and nott taken notice of by Euftaclius bimfelf; namely a fhort anafo. mojis $R S$ (about a quarter of an inch in length) from the leftt emulgent artery S, which forming an arch under the left emuld gent vein, was inferted into the anterion part thereof at R.
$A B$ (Fig. 16.) reprefents two fermatic arteries on thee right fide; CCC , the defeending aorta, and the two iliac ar teries; DDD the afcending Cava, and the two iliac veins F $\mathrm{F}, \mathrm{L} \mathrm{M}$, anafomofes of the fpermatic veins and arteries; G G the right fpermatic vein, H the right ovarium; I K an anafoz mofis of the fpermatic artery and Cava; NQN , the left fper matic artery; OO the left permatic vein; P the left ovarium R S an anaftomofis of the emulgent vein and axtery; T T, V V, V, arteries and veins difperied on the fat and membranes inclofing the kidneys.

A new Family of Plants, called Oxyö̈des; by M. Garcirn togeiber with a Remark; by Mr. Martyn. Phil. Tran N $\mathrm{N}^{\circ} 45$. p. 377°

THE oxyoides is a family of plants, whofe flower and frui are altogether like thofe of the oxys; that is, the flowee is compleat, regular, polypetalous and hermaphrodite; cor taining the ovcrium, which afterwards becomes, as in oxys, fise corner'd fruit, divided into five cells, filled with fimaz
feeds; each of which is covered by a membrane, like a hood, which opens, when ripe; and by an elaftic motion, makes the feed leap uut.

The true characters by which it is diftinguifhed from the oxys are, that the leaves are difpofed by pairs along a rib, without being terminated by an odd one, which makes them entirely refemble thofe of the tamarind. That thefe leaves are all gathered together in an umbel, on the top of a naked ftalk; that they are not in the leaft degree acid; and that they fhew as great a fenfibility, on being touched, as the fpecies of mimofa.

The fpecies of this genus are

1. Oxyoides Favenica, Sonfitiva, caule rubefcente, birfuto flore luteo, rainore, repretented Plate. IV. Fig. 17.
2. Oxyoides Malabarica, Senfitiva, caule viridi, glabro altiore, flore majore, reprefented Fig. 18.

The firft ipecies ufually gmows to the height of half a foot : It is compofed of a naked ttalk; ribs of leaves, and pedicles of flowers; , each of thefe parts is of egual length, and ufually three inches, when they are at their full gruwth; and the whole is difpofed in an umbel.

The root, which is almoft as long as the ftalk, runs ftrait down, and fometimes obliguely into the ground. It grows tapering from its neck, which is of the fame thicknefs with the ftalk: It is fet with friall fibres, a little waved and white, and giving rife to other pretty fhort filaments. The whole root is whitinh.

The ftalk arifes fomewhat frait, and fometimes crooked; fometimes wrinkled, and fometimes plain throughout the whole length, pretry downy, or rather bairy, and always reddifh in fome places. It is from a line and a half to two lines thick towards the top, and ufually fomething lefs towards the bottom. This flalk, which forms a kind of butron, or little head at the top, gives rife at that place to all the other parts of the plant; that is, to the ribs of the leaves, and the pedicles of the flowers. $\overline{\frac{1}{2}}$ which makes the whole tuft sefemble an umbel.

The ribs of the leaves, which grow from the top of this ftalk, go on increafing till they equal the length of the ftalk. They are about the thicknefs of the treble ftring of a violin, and equai throughour the whole length: They are fomewhat downy like the ftalk.

The leaves, which grow by pairs, poffefs two thirds of the rib; that part next the ftalk being naked. The firt pair of leaves is the leaft; and the laft pair always the largeft. Thefe are commonly half an inch long; and the fmalleft are not above

100

 that they feem to have no tail. Their bafe is al ways the broadeft ${ }^{7}$ part of the whole rib, and always parallel to the rib: The reft of the leaf bends itfelf a little forwards: The middle of their length is commonly their narroweft part; and from thence the 3) are gradually enlarged, and rounded at the extremities. Thee bates of all the pairs are almolt of the fame bignefs, except the laft, which has the breadth on one fide only of the little nerve? which traverfes the leaf, to a void incommoding itfelf with itss neighbour: But to make amends, the leaves of this pair ares broader than the others, and a little below their extremitiess efpecially outwards. They are all traverfed lengthwife by a fince nerve, or thread, always bent like the leaf on the fide of thet laft pair. They are of a lively green on the infide, and a little whitifh on the outfide. Their plane is garnifhed with a great many very flender threads, almoft imperceptible but parallel which likewife grow by pairs, and are placed at acute angle with their little common nerve, and grow fmaller at the edge oo their leaf. In fhort, their pofirion and figure come pretty nea to thole of the tamarind. The number is commenly from 8 te io pair; and they are as fenfible on being touch'd, as thofe on the fpecies of mimofa. They fhut themfelves up at fun-fet, az it were to ileep, after the fame manner as the leaves of the tamat rind. The ribs are in number from 2 to 3 dozen; and the pee dicles of the flowers are about a fourth part fewer in number they appear of different lengths, becaule the fhorteft are thoe youngeft, but at laft they ufually grow to almoft the famos length with the firft. The opening of the leaves is performed almoft after the fane manner with that of the top of the fpike of the ipecies of beliotropium, unrolling like the tail of a font pion. The ribs and pedicles are a little hairy, as well as tht falk. The pedicles are of the fame thicknefs with the ribs.The flower, tho it feem to be monopetalous, is not fo_{y}, any more than the fpecies of oxys, which feem to be fo too: Other wife M. Vaillant's principles would be falfe, who has laid i down as a rule, that in all monopetalous flowers the chives grow from the fides of the flovirs; and that thofe which grow from the bafe of the embryon, or rather from the ovarium, ar always polypetalous. In fhort, if we examine them nicely which no one has done till now ; we may obferve, that thel flowers have no anus at the bafe, but that the petala which ary always five in number, have their bafes feparated very ditinell one from mother ; and tho' they ase re-united about the mid
die, which makes them look as if they were of one piece; yet they may be feparated without tearing.

The petald are equal, they are from 3 lines to 3 lines and $\frac{x}{2}$ long, and towards the extremity about a third part as broad as they are long: They are flightly cut in like a beart at their extremities. They are of a lemon colour, paler or deeper, according to the moifture or heat of the fealon. Each of them has a fmall ftreak running thro' their middle lengthwife. They are covered by their empalement about $\frac{2}{3}$ of their height; and from thence they open in form of a bell. They are very tender, and laft but the fpace of one morning.

The empalemens is one leav'd; it is two lines high, and the half of this height is the thicknefs of its bafe. It divides a little below the top into 5 lobes, very fharp at their extremities. It is pale-green, regular and a little hairy.

The chives grow from the bafe of the embryon, being twice the number of the petala; five of them being higher than the orher five. The higheft reach up to about the middle of the petala; their fummits are of the fame colour with the petala and the chives of the fame colour with the empalement, or a little brighter.

The ovarium is very fmall and round, but a litile furrowed into five ribs, the diameter of which is about one third, or almoft half a line. It is crowned by five teeth, which form the body of the ftylus.

This ovarium afterwards becomes a dry fruit, of an oval form, ftarred with- 5 furrows, of which the leaft diameter is about I and $\frac{x}{2}$ or a lines. This fruit is divided into' 5 cells, and opens at the top when ripe, and then expands ifrelf by litie and little to its very bafe; and difclofes frnall roúnd feeds, lodged a together in each sell. They are each of them covered with a little hood, or very fine membrane, which, upon the increafe of the bulk of the feed, opens iffelf with violence and throws it on the ground. The colour of the feed pretty nearly refembles that of pryliium.

Each pedicle, during the time of its increafe, continually puts forth new buds and new flowers, in the fame manner as the falk continually puts forth new leaves and new pedicles at the top. The number of theie buds is cominonly g or 6 at the top of each pedicle, cnlarged into a head. Thefe buds grow, inereafe, and expand themtelves one affer another; which is the caufe that this plant, when once it Legins to fower, puts forth
new flowers every morning, which entirely vanith in the after noon. The little bunches of buds, each of which adorns a large pedicle, are encompaffed with little points, which form a kind of common empalement. The little pedicle, which is proper to each flower, is flender, and a full line long; fo that its length is equal to the diameter of the empalement.

The diameter of the flower, when it is moft expanded, is four lines.

The $C_{P e t a l a}$ make the empalement expand itfelf a little, but when the fower is faded, the lobes of the empalement draw together, and form a pyramidal body; but when the Ovarium grows larger, and becomes the fruit, the lobes of the empalement expand again without changing their fhape; becaufe the body of this empalement increafes its diameter by the effort which the fruit makes within it.

This plant is very fenfible of the leaft cold; it loves warm and moift places: It is found in the inland of Java, and probably in other inlands of the Sonde, and the Moluccas. When one touches its leaves they clofe immediately, and open again by little and litue. The more they are warmed by the fun, whilf the foil is moift, the more impetsoufly they clofe againft one another: The Portuguefe Indians call it Dormidera, becaufe on being touch'd it feems to fleep, by hutting up its leaves; or elle becaufe fome among them think it procures fleep by being put under the ear, as M.Garcin has feen practifed. The leaves of this fpecies have no acidity in their talte, and communicate but a faint tincture of red to the blue paper.

Fig. 19. Pl. IV. reprefents the empalement of the Oxyoides.
Fig. 20. the flower, the petala of which are joined together.
Fig. 2 I a Petalum apart.
We are obliged to M. Garcin for his curious defcription of this plant; whereby its Genus is determin'd: It is however by no means a new fpecies; having been defcribed long ago by Acof. ta, and other authors, under the name of Herba viva. Mr. Nartyn has leen a fair fpecimen of it in Sir Hans Sloane's Horius Sicüus, with which M. Garcin's figure agrees very exactly. It was the firft fenfivive plant known in Europe, and very different from thofe which are now brought from America, and cultivated in our gardens under that name.

Remarks on the Family of Plants called Mufa; by M. Gavcin. Phil. Tranf. No 415 . p. 384.

ALMOST all the writers of botany have looked on this family as a tree, on account of its bignefs; tho' it be tender, fpongy, membranous and fucculent, not at all hard or woody : Its ftalk is flender and fupple, not able to keep itfelf upright, without a great number of thick, membranous fheaths, which entirely inclofe and defend it from the injuries of the weather : Befides, this plant being annual bears fruit but once; and then by degrees perilhes.

Trees, on the other hand, which are ligneous, hard, and perennial, bear fruit leveral times. The largenefs, therefore, of a plant does not feem to be a fulficient character to diftinguilh a real tree from a plant that is not one.

Again, the fame botanifts have placed the mufa in the palmaceouis clafs, which are all trees; probably, on account of this plant's having but one ftalk, without any branches; and becaufe the large leaves a-top divide, when they grow old, in fuch a manner as to refemble in fome degree a fort of palm.
M. Garcin, having had an opportunity in the Indies to confider this plant better, foon found that it properly belonged to the liliaceous tribe. It is known that the liliaceous plants have feveral characters, which diftinguifh them very well: Their roots are either bulbous, tuberous, or confifting of thick, flefhy fibres: Their leaves involve the ftalk more or lefs at their bafes. The fubftance of their flowers is filled with filver fpangles; and laftly, their fruit is always divided into three cells. The mula has all thefe characters. Labat, in his travels, affirms that the root of this plant is a thick bulb, round and maffy, emitting fibres. Marcgrave, who has given a full defcription of this plant, under the name of \mathcal{P} acoeira, has obferved, that at its firit appearance, it fends forth 2 or 3 leaves, rolled up like a horn, which unroll themfelves, and grow after the manner of the cannacorus: And according to M. Garcin's obfervation, the fruit in all its dpecies is conftantly divided into three cells, which is fufficient to thew, that it is a true liliaceous plant.

As Marcgrave, and the Authors of the bortus Malabaricus, have given a large defcription of this plant, M. Garcin only gives a definition of this genus, to make it better known.

The mufa is a liliaceous plant, with a monopetalous, irreguJas flower, incomplete and hermophrodite, compofed of a tube, which

104

MEMOIRS of the

which is filled with the ovarium, and a pavilion divided intoo feveral lobes, and forming a kind of mouth. The ovarium which ftrongly adheres to the tube, is triangular, and crowned with five chives, which grow from the fides of the flower; it has allo a Jylus, which is terminated by a little head. It afterwards becomes a foft, angular, long, crooked fruit, fomething like a cucumber. This fruit, when ripe, is flefhy, and dividedi into three cells, filled with a mucilaginous pulp; under whichn the feed is placed along a placenta, which ferves as an axis too the fruit.

This feed is fmall, round, and edged with an almoft imperceprible leaf. The flowers grow at the end of the ftalk, in knotss difpofed in a fpike. Each knot is loaded with two rows off flowers, covered with a membranous, hollow, thick, oval, co-. wering, which ferves them for a common empalement. In the Wortus Malabaricus there are three plates, which exhibit at good reprefentation of the plant, its flower, and fruit ; bute M. Garcin obferved three defeats in them : I. The flower is nott xeprefented in its moft perfect ftate, but almoft withered ;' andl to its pavilion is too much cleft, which makes the flower feem, tetrapetalous: For, the flowers of thefe plants divide when they are old, as well as the leaves. 2. The three cells are not fhewn diftinctly, in the tranfverfe fection of the fruit. 3. That the feed is not reprefented at all.

This family comprehends about 25 fecies, known to the $I n$ dians; the differences of which are ufually taken from theil fruit. This plant does not perifh before it has ripened its fruit; whence it might laft longer in a temperate climate, cool enough to retard iss fruit.

The rind of the fruit is formed of the tube of the flower; and the lobes dry away during the growsh of the fruit.

Fig. 22. Plate IV. reprefents the fruit of the musa, half fripped of its bark.

Fig. 23 . The fruit cut thro' the middle.
Fig. 24. The fruit cut tranfverfely, diffinguining the three cells and the feeds.

Fig. 25. Shews another fpecies of mina, cut tranfverfely, reprefented in the hortus Malabaricus; but having the cells better diftinguilhed here: The fix black points reprefent the feed.

Q'be Hirudinella Marina, or Sea-Jeech; by M. Garcin. Phil. Tranf. N ${ }^{4} 45$. p. 387.
M. Garcin found this worm in the empty fomach of a fifh, which the Portuguefe call Bonite: It was faftened by its protuberance upon one of the folds of the inner membrane. It made a pretty deal of refiffance when he endeavoured to pluck it away,

Its fhape came very near that of a leech; it had all the motions of that animal, together with fome peculiar to irfelf.
Fig. r. Plate V. reprefents this infect as big as the life, and according to its moft ufual dimenfions; its body is round almoft throughout its whole length, but fomewhat flatted towards its belly B : So that its circumference, taken according to its thicknefs, is almoft elliptic: It is adorn'd all along with little circular furrows, parallel to each other, and very clofe together, but fo fine, that one can fcarce perceive them without a microfcope. It is of a greyifh colour,' and its body a little tranfparent. On its back, as well as underneath, two black lines begin by an acute angle towards the neck, and running thro' the whole length of the body, feem to terminate towards the anus. Thefe lines are tubes or vifceras which ferve for nutrition, or chylification, and appear thro' the integuments. M. Garcin divides the length of this little leech into two parts, diffinguifh'd by the centre of the little protuberance C , which is under its belly; and is a muf. cular body, in form of a fpherical bladder. Thefe two parts of the body are in the ratio of four to three. He calls them the fore and hinder part. This little protuberance, in its greateft extenfion, may be compared to the cup of an acorn, with the mouth a little contracted. The head E, which is the fmalleft end of this worm, has a hollow body underneath of a conical, or almoft hemifpherical figure; which feems to ferve it for a mouth to fuck, as well as to faften itfelf on the various bodies, which come in its way, after the manner of other leeches.

The belly B is of a dark colour; becaufe feveral vi/cera, contain'd therein, are filled with a thick, black liquor; which makes it look as if the fkin were of that colour. The forepart CE is varioufly fhaped, according to its different mo tions; fometimes it lengthens itfelf, and then it becomes flen der; the diminution being made by degrees up to the head 3 Vos. 1X. 3
© and
and fometimes it coneracts itfelf; and then the thicknefs increafing, it becomes all of an equal bignefs. The hinder part C B does notchange its figure, becaufe it moves but flowly, and very feldom. When this infect ftops itfelf any where, it holds ftrongly by means of the protuberance. Before it apply the protuberance, it Chortere it, by withdrawing the edges, or the circumference towards its centre; and after it has applied the orifice of its protuberance upon the furface of any body, it lifts up a little the centre or bottom towards its own body; afterwards it fwells and ftretches it on all fides, according to all its dimenfions. This protuberance, thus applied, ftretch'd, and void of air, makes that which endeavours to enter, prefs it externally on all fides, and hold it fo। faft, that it is above the ftrength of the animal to feparate it: from the place where it is applied. This animal being thus faftened, and detain'd by its protuberance, its fore-part isi always in motion, whilf its hinder part remains almoft im-moveable. It ftretches its head fometimes to the right hand, fometimes to the leff, by lengthening and fhortening itss fore-part, which bends and ftreightens iffelf very frequently.. The extent of all thefe motions are mark'd in the figure by pricked circles of different magnitudes; all which touch one: a nother at one point of their circumference, at the centre of the protuberance, which is the beginning and fix'd point, as it were, of all thefe motions. When this little animal defires to change its place, it makes ufe of its protuberance and its fucker, which is the little bollow under its head, and feems to ferve it inftead of a mouth: It applies this part to the place D, whither it would remove its body; and after being prolonged by its fore-part to reach the place, where this application thould be made, it draws its protuberance and fucker together, by bending its fore-part circularly, after the manner of fome caterpillars. Its protuberance being applied, is loofens its fucker, and prolonging itfelf, applies it to another place more forward: The lucker being faftened, it bende itfelf circularly again, in order to bring the protuberance up to it, and appiy it as before. By this we fee that the worm prolongs itfelf to apply its fucker, and contracts itfelf to do the fame with its protuberance. Thus thefe motions and applications are made fucceffively, and as often as there is occafion. The hinder part faftens itfelf to nothing, bist is always drawn by the part which goes before it.

This little animal did not live above two hours after it was taken out of the place M. Garcin found it in: It grew languid as foon as it was expos'd to the air, and recovered fome vivacity as foon as it was pur into a lirtle fea-water; and as foon as it was put in the water, ir fent out from its mouth a fmall green, almoft impercepible, thread, which kept itfelf fulpended in the water, and was about as long as its body, and as fine as the fineft thread of a cob-web. After this thread was put forth, it likewife emitted from the faid place fome little bubbles of air. The body of the worm, while alive, decreas'd in bulk by little and little; and after its death this diminution either ceas'd or becanne lefs fenfible. Having, as foon as it was dead, cut its belly thro' wirh a pair of fciffars, and fqueez'd it, there iffu'd a black, thick, liquor.

From thefe facts we can draw but very flender coniequences. It is certain that this infect cannot live out of the water: So that one cannot imagine it could live in the ftomach of any land animals, unlefs they came near the nature of the amphibious: For, the worms which grow upon, or within the bodies of animals, ought to be of the fame rature with them, with regard to the elements in which they live. This worm feems to be incapable of living any where but in the bodies of filh, feeing it kept alive but a very little time in the feawater, in which it was put, having been expos'd to the air but one moment at two different times, which was not fufficient to alter its parts, and caufe its fudden death. The almoft immediate diminution of its bulk in the water is another mark that it cannot live in the fea out of the body of the fame fin: For, if the water, which was more natural to it than the air, were injurious to ir , much more would the air, to which M. Garcin expos'd it. The fine fibre which it put forth, and the decreafe of its bignefs, were figns that it fuffer'd fome uneafinefs. The black and thickilh juice, which iffu'd out of its intrails, could be nothing but fome half coagulated blood, which it had fuck'd in thi "omach of the filh.

As the bonite is a fifh of prey, living on other fmall filh; it is probable that this little leech ufually fattens itfelfion thore which come into the ftomach, and that it lives on their blood.

The ftomach in which M. Garcin found it, was quite empty: So that it was, probably, as hungry as the bonite could be : For, this filh is not ealy to be catch'd, but when
hungry. However, it was the firft time he found it fo ver! empty, tho' he had feen a great number opened.
A Solar Eclipfe observid at Wirtemberg, July 4. 17300 O. S. by M. Weidler. Phil. Tranf. No 415. p. 3941 Tranflated from the Latin.
True time Phafes

Obfervations

before noon
H. ' " Dig. min.

3	56	0		
59	0	5		
4	10	30	6	55

The fun rifes behind clouds.
The fun hid behind clouds.
260630 r. The fun rifing (as reprefented it
33 - 6 ○ Fig. 2. Plate V.) exhibits an elliptice 38 :0 530 figure: The vertical diameter appears 43 30 50 two dig. or $\frac{x}{6}$ part of the faid diamete
47 ○ 4.30 thorter than the horizontal one.
2. That part of the moon, that regardec the weft, had a very remarkable afperit!
$53 \quad 33 \quad 3 \quad 30$
$57 \circ 30$
$330=0$ it edge: For, at $43^{\text {a }}$ a valley was diftinctly obferv'd, 's $\frac{1}{9}$ o part of the moon'? 70 I 30
$x 030$ 1 0
F3 030 diameter in depth, and about $\frac{x}{4}$ 年 part oo the faid diameter in length. In the pros grefs of the eclipfe the unevennefs of tho moon's limb was diminifh'd, and hid by as blueifh fofcia, adhering to it; and thii fafcia gradually dilated itfelf as the furn rofe higher; befides this blue colourt, there appear'd a reddifh colour clofer tob the moon; and about the end of the eclipfte the thicknefs of the coloured $f a / f i a$ pear'd to be $\frac{1}{3} 6$ part of the moon's diameter nearly.
3. Befides, a continual commotion oft the fun's light was obferv'd near the colour'd edge of the moon's difk.
\$5 $30 \circ$ The end of the eclipfe.

The fame Eclipfe obferv'd at Padua; by M. Polenus. Phil. Tranf. N°. $4^{15} 5$. p. 396. Tranjlated from the

Latin.

A S the fun was rifing, thin clouds almoft furrounded the horizon; but thete afrerwards difperfing, the air was
fomewhat foggy; fo that the folar maculec could not appear diftinelly.

	H		
4	16		12
$3{ }^{\frac{1}{2}}$	16	48	7
3	16	50	36
2	16	57	
$\underline{1}$	17	1	
${ }^{\frac{1}{2}}$	17	3	29
The end	17	6	

An Explanation of the new Cbronological Table of the Chinefe Hiftory; by F. Foucquet. Phil. Tranf. No 415 . p. 397°

THE Cbinefe original table (one of which, printed at Canton, was prefented to the Royal Society by Sir Thomas Derebam, and is now repofited in their library) from which F. Foucquet's tranlation was made, is owing to the learned Nien bi yao, a Tartar illifutrious by bith and merit, and Viceroy of Canton in 1724: For the Tartars, fince their conqueft of Cbina, are become well vers'd in fciences, and efpecially in the hiftory of the empire they conquered. Yet this gentleman is not the author of the chronological fyftem he has here drawn up: He himfelf tells us, he has taken it from the moit valu'd hiftorical work in China. What renders this writer praife-worthy, is his ranging his fyltem in a beautiful order, which makes it exceeding eafy to fee at firft fight the feries of the dynafties, or imperial houfes, the names and fucceeffion of the eimperors, the beginning, end and duration of each of their reigns: However, this is not the only advantage of this new table: The ancient chronology of Clina is therein reduced to its true beginnings. The moft remote epocbi of this chronology, according to this author, does noe furpafs

110 MEMOIRS of the

furpafs the firft year of a prince, call'd Guei lie wang, wh began his reign 424 years before the vulgar cra. Some ther are who think this epocba might ftill be brought nearer tod us; not to fix there the origin of the nation, which, fort ftrong reaions, may be traced back to near the deluge; but becaufe from much later date only, doth any certainty appeaar of whatever is pretended to have befallen this famous people Se ma quang, (Sema wen, or Sema wen Kong) and Tibu bbi the two graveft hiftorians China has produced, were of thiis opinion: The firft flourifl'd in the year of Chrift 106I, irn the eleventh or twelfth century; the fecond about the end out the twelfth or beginning of the thiricenth century. Theyy have both omitted whatever is before the time of Guei lite reang, nor would they mention ought of it in their hiftories.. Nay, they have not begun them till the 23 year of Guei liee reang, fomewhat later than Nien bi yao, who begins with the firft year of this prince's reign. It is on the example and authority of thefe two illuftrious philofophers that Nien bi yao has relied in fuppreffing what preceeds: By fixing this epochaz at Guei lie wang, fabulous times and a thoufand errors and abfurdities, current in Europe concerning three imperiall (abfolutely imaginary) families, and reigns anterior to, butt no lefs chemerical than thefe families, are retrench'd. Thefe: errors will foon vanifh of their own accord: So that the fubjeßt of fo much laborious, but ufelefs lucubration and 'ftudy, will at length ceafe; a worthy motive for congratulating the learned world.

This is not all: We are ftill particularly obliged to the ingenious Tartar for having found means to place in his table the cycle of 60 years, call'd Kia Tfe, fo much efteem'd by the Cbinefe, that it is as the foundation of their whole chronology; a point which requires explanation. As we mark the incidents of ancient hiftory by the years of the olympiads, fo the Cbinefe mark what has happened in their country by the years of this revolution. According to the Cbinefe, the prince under whom the great wall was finifh'd, began his reign the 52 d year of a cycle, which is found to be the fourth in this chronological table, reckoning from the cycle of the general epocba inclufive: This general epocba is the firf year of Guei lie ruang. Every year of the Cbinefe cycle is mark'd by two letters, which make up its proper character. and diftinguilh it from the other 59 reprefented in Plate V.

Thus the firlt year is call'd (1)KiaTfe, and givesits name to the whole cycle. Thus the 52 d year of the fourth cycle, in which the prince, who finifh'd the great wall began his reign, is call'd (2) r mao. This prince, after bloody wars, became Monarch of Cbina, and then abandoning himfelf to fuch impious pride, as the philofophers reproach'd him with, caus'd himfelf to be call'd (3) Cbi boang Ii, that is, the fir f mafter the firft Emperor reigning of bimfelf: For, this is the real fignification of thefe characters; and thofe glorious titles belong to God alone in the ancient monuments. This unheard of ufurpation happened in the 26 th year of his reign, which is the 17 th of the fifth cycle, and is there called (4) Keng Cbin. It is thus that all the years of the emperors for above 2000 years, have names in hiftory common to them, with the correfponding years of the cycle; and thefe names common to both, are a fort of link, which unites the years of the emperors to the cycle, and thereby prevents confufion: Hence we fee how the cycle among the Cbinefe is the bafis of all their chronology.

Here a queftion naturally arifes, concerning the fignification of thefe characteriftics, which diftinguifh the years of the cycle and emperors: It is to be wifh'd it were as eafy to anfwer this queftion as it is natural to propofe it: But it regards characters fo widely different from ours, that their nature or origin have never been well extricated, nor has there been any principle hitherto eftablifh'd for their explanation. We muft remark.

1. That it is not poffible to tranlate thefe names. 2. That they are compos'd of two forts of characters (as reprefented in Plate V.) very famous among the Cbinefe, who in their youth get them by heart, and employ them on a thoufand occafions. Thefe of the firft fort are ten in number, and are call'd yearletters; thefe of the fecond fort are twelve in number, and are call'd bour letters. 3. That thefe two forts of characters are combined, by repeating the ten year-letters fix times, and the twelve hour letters but five times; and from this combination refult 60 names for the years that compofe the cycle: Thefe three points well comprehended, luffice for the ufe and underftanding of the chronological table.

The Cbine f e pretend that thefe 22 letters were invented by a very ancient king, they call (5) Hoang T i, in order to determine the beginning, progrefs, end, and fucceffive periods of a grear year: For, they have one which includes a certain num ber of ages, tho' its total duration be no where diftinetly markt.

12

MEMOIRS of the

They fay the great year is fucceflively at Kia, at y and Ping. Now it is no eafy matter to determine the extent thefe different parts of the great period (for there is room conjecture that they are unequal) how long, for inftance, lat that which commences at (6) Kia, that at (7) y, and fo of tll reft; nay, it is perhaps impoffible, for want of certain principlee the knowledge of which is entirely loft. When the year war at Kia, which feems to fignify when it began, this point of time according to tradition, is call'd (8) O Fong; when it was at 's this is call'd (9) T'beoumong; when at (Io) Ping, the nam given it was (II) Feou Tcbao. Every one of the other 19 lee ters has in this manner a word for its device: But as it is plaint that all thefe words are very uncouth to European ears, and thaa thofe which remain are as obfure and barbarous as Kia Ifie x mao, Keng cbin, M. Foucquet omits, mentioning them Neverthelefs, one fhould not eafily believe that thefe words an void of all meaning; or that the letters, whole names they arre are figures made at hazard, or arbitrarily imagined: The in ventor of the fe names muft have propos'd to himfelf fome enod It is already known in general, and is demonftrated elfewhere that the characters preferv'd by the Cbinefe, but much morr ancient than them, are true hieroglyphics: It is likewile know and ftrongly demonftrated, that the doctrine veil'd under tha appearance of thefe hieroglyphics, is very myfterinus and fi blime: And it is unreafonable to regard as nonfenfe, and rejeci fuch as we underftand not, purely becaufe we do not underftane them. And indeed when we narrowly examine the 22 letter in quettion, we perceive in feveral of them fomewhat very myd terious, with which the Cbinefe themfelves prefent us, with out underftanding them; for inftance, (12) T/e, the firft on the hour-letters, fignifies with the Cbinefe both the momen of midnight, and a tender babe juft born, wrapt up in hi fwadling-cloaths. Ou, the 7 th of the hour-letters, fignifie the moment of noon, and a man lifted on a crols. This letter fignifies noon, according to the primitive meaning, whict ftill fubfifts, without having ever been difus'd; it alfo figni fies a man lifted on a crofs; as is evident to the eye by the chaz racter itfelf. Some difficulty may be raifed on this point, but it fhal be refolved anon. Where have this people got fuch ideas? They are unintelligible to them at prefent; and yet (it is ftrange) thes preferve them preciouly, and ufe their utmont endeavours to finc out the fenfe of them, but to no purpofe. It will increafe the
furprife to reflect on a Cbinefe axiom, the fenfe of which is that the heavens opened at the hour of TJe, which, according to the foregoing expofition, ought to be underftood of the moment of midnight. And in order to raife the admiration a degree higher, T/e, which fignifies an infant, is literally and properly ufed to fignify fon. Now let the reader attend to the furprifing words of a Cbinefe writer on this fon. '(I.3) the firft - inftant, fays be, of the production of things, their principle ' and origin came from the fon. The fon is the caufe by which ' all things had a beginning.' When the year is at (12) TSe, that is called (I_{4}) Kouen Tun; this Kouen in the common acceptation, fignifies work, pain, grief; Tun fignifies being reduced to great anguifh : The application of thefe words to the tender babe, to the fon Jately born, produces a meaning, which by being too intelligible and too beautiful, raifes wonder. When the year is at $O u$, it is called (I,) Tun TGang. We havè feen that \mathscr{T} n fignifies anguifh, affliction: In order to have the true fignification of Tfang, recourle muft be had to the analyfis, as on infinite orher occafions: The analyfis gives (16) Yang, the emblem of a lamb, and (17) Tfang; which fignifies to divide, to pierce. Thus at the hour of noon, marked by (18) O_{k}, that is, a man on a crofs, the lamb was pierced. This fo ufeful a cycle, which in the printed hiftory is a certain rule to fix time, the ingenious Tartur has difoofed in his table with fuch art, as renders the relation of the years of the cycle to the years of the emperors very fenfible : Whence arife great advanrages, that are very vifible to whoever attentively confiders the table, and penetrates into its arrangement. In the front of the table appears a line writ in capital letters, which extends horizontally from right to left: This line contains, according to the order of their fucceffion, the names of 21 dynafties, or imperial families, who have reigned four centuries before Ffefus Cbrift till this time. Thefe names placed exactly on the lines, where are the beginnings of the dynafties to which they belong, are as fure guides for eafily finding them ; and under the direction whereof one comes without difficulty to the knowledge of the emperors of thefe imperial families, as well as the incidents of their reigns. This cycle is placed in the middle, in a perpendicular line or column, which extends from the top to the botarm of the table, and is divided into 60 little lodges or fquare area's, every one of which anfwers to a year of the cycle, and contains the name of the year it anfwers to. The angles, or empry paces, which furround the name in each of thete lodges,

Vol. IX. 3

114
 MEMOIRS of the

were coloured black, that the whole may the more readith ftrike the reader's eye, and be the more eafily distinguifhed On the right and left of the cycle thus placed are ranged 200 other columns, divided into 60 lodges each, in the fame manne as the cycle; and confequently, equal to the cycle to whicth they are parallel. It is in the lodges of thete columns, paralle to the cycle, that the years of the emperors are difpofed irn their natural order for above 2000 years. They are difpofecd from top to bottom, from the right to the left, after the Cbinefie cuftom, that is, from the right to the left of the perfon that reads the table. And it is effential to remark, that the ar: rangement is fuch, that each of thefe imperial years, referredd to the column of the cycle by a horizontal line, which falls att right angles on this column, anfwers to the year of the fame cycle, whote name it bears in hiftory: The columns at the end are left blank to put down the future emperors, as they fhall fucceed.

Purfant to this explanation, the firft year of the Prince, called Guei lie wang, at which the table begins, whereof that iss the epocba, will be found in the firf column at the right hand, prety near the bottom, under the author's fmall preface; and oppofite to the 53 d year of the cycle, called (19) Pin chin $;$ becaufe in hiftory this firt year of Guei lie wang has the two letters Ping chin for is characteriftic. The reafon why this firf gear of Guei lie wang is taken for the general epocha off the whole table, is, becaufe there is neither clearnets or certainty in the hiRory before it: But if, becaufe this firft year of Guei lie roang, is taken for an epocba, it were placed oppofite to the: firft year of the cycle, it would occafion an anachronifm of 53 years; a capiral point, to which fuch as intend to ufe this chronological rable, cannot give too much attention. In a word, fince hiftory has given this furt year of Guei lie wang the name of Ping cbin, it is not allow'd to give it any other in the table; and one is obliged to refer it therein to the year of the cycle that bears that name, to avoid confounding time, and puzzing chronology. It is in this arrangement that all the arrifice of this new table confifts: And this point, once well underflood, is a key which gives entrance into all the reft.

The characterffic names of the 60 years, which compofe the cycle, do by their connecition with the years of the emperors determine the precife time of incidents: Hence arifes clearnefs and certainty in the Cbinefe chronology: For, thefe characterifeicks contribute to the difoovery of errors, which either the
ignorance and neglect of copyifts and printers, or the want of attention in authors, offen introduce into chronology. For inftance, in the chronological table of the Cbinese monarchy, printed at the end of the work, entitul'd Confucius Sinarum pbilofopbus, it is faid, that Cbi boang Ti (vide Monarch. Sin. tabul. cbronol. p. 24, 25.) in the $24^{\text {th }}$ year of his reign, built, or (tu fpeak more accurately) fini hed the great wall; and condequently, the burning of the books is placed in the fame emperor's 25 th year. Now according to hiftory, the great wall was finifhed in the year of the cycle, called (z0) Ting bai, a name that can agree only with the 33^{d} year of this emporor's reign. As to the burning of the books, it is marked in hiftory in the year (21) Vou T $T /$, which neceffarily anfwers the $34^{\text {th }}$ year of this wicked prince.

Thus thefe characteriftic naines of the years, that compofe the cycle, are as a touch-ftone, that is of wonderful fervice for diftinguifhing truth from falfhood, and re-eftablifhing order, when difturbed. This cycle removed, the years of the emperors might be very eafily confounded, by augmenting or diminifhing their number. When an emperor is newly come to the throne, if the firft year of his reign be reckoned that, wherein his predeceffor died, it is placing two years in one; becaufe according to the Cbinefe cuftom, the year wherein an emperor ends his reign, is entirely attributed to him, tho he died in the beginning of the firlt month ; and his fucceffor is reckoned to reign only from the beginning of the enfuing year. Let this cuftom, tho' very common, is not fo univerfal, but that fome emperors have deviated from it. The Tartarian emperor Thbang Hoang Ti, founder of the dynafty now reigning, caufed the year, wherein Hoai Toong had murdered himlelf, to be taken for the firft year of his reign, which was the feventeenth and laft of this laft emperor of the Mings. If, according to cuftom, this feventeenth and laft year of HoaiThong were diftinguifhed from the firft of Thoug boang T_{T}, it would be making two years of one, which would confound time. Refume the cycle, apply it to the years of the emperors, and thefe errors will appear of themfelves. You will fee rhat the year in which Hoai Tfong died was called (22) Kia chin; that that in which Tibang Hoang Ti began his reign, was likewife called Kia Cbin; therefore they are the fame year: If it were made two, the miftake would be difcovered at firt fight, and fhould be corrected.

116
 M EMOIRS of the

Under (23) Yven thofe accidental Tartars, whofe domination over China began in the year 1280, and ended in 1368, the emperor Wen TJont died in 1333 : Ning Tfong his fucceffor reigned but fome few monchs; and Cbun $\mathcal{T} i$, who fucceeded Ning Trong, mounted the throne towards the end of the fame: year. Three years may be eafily made of this one, in ordere to place the three princes juft named. But whoever makes ufe? of the cycle need not fear the miftake. The death of the two firtt emperors, and the acceffion of the third to the throne, are: three incidents, which hiftory refers to the year of the cycle, called (24) Quei yeou; and this charateriftic name is a link;, as it were, that binds them all together: Su that it is no longer: poffible to feparate them.

A nother property of this new table, no lefs remarkable ore: ufeful than the foregoing, is, that it lays before the eye all the names of the particular epocisa's, affumed by the emperors off Cbina for near 2000 years: For, Han uou Ti, the firft who rook this fort of epocba, began his reign 140 yearṣ before 7 fefusi Cbrift.

No body, fo far as M. Foucquet knows, has given Europe: a fufficient account of the nature of thefe epocba's ; tho' they be: very well worth explaining.

The emperors of Cbina have a particular cuftom, little known in Europe, which, if care be not taken, would infallibly fpread darknels and confufion over chronology and hiftory. It is not allowed to pronounce the proper name of any emperor during his life, which is looked on in fome meafure as ineffable. This refpect continues even after their deaths: For, then it is not by their proper names they are mentioned, but they are confecrated (fo to fpeak) by a furname, which is a fort of charatter of canonization. And under this tille are they received into the burying place of their anceftors, and afterwards ranked in hiftory. But in their life time, to fupply the name that dare not be pronounced, they themfelves, in imitation of Han wou T_{B}, already mentioned, choofe and determine a term that ferves for an eposiba to the incidents of their reign. This term we call eporha; becaufe it is from it the years of emperors are reckoned, and to it every thing is refered that falls out during thefe years. Examples will make thefe things eafy to comprehend. The famous emperor who died Dec. 20. 1722, after a reign of $\sigma \mathrm{r}$ years, had the letter (25) Hiuen for his proper name. During his reign, this Jetter was not to be put into any public memorial, book, or writing. The letter ($2 \hat{\jmath}$) Yuitn was
fubftitured in its room, becaufe it would be a kind of prophanation to emplny for common ufe the name of a prince, who ftiled himfelf (25) fon of heaven. After his death his $4^{\text {th }}$ fon, who fucceeded him, gave him for title of canonization, the glorious furname of (27) Cbing Tfou gin boang Ti, that is ihe boly Anceftor, the auguft, good and merciful Emperor. This character Gin, which M. Foucquet has tranlated gracious and merciful, fignifies charity. It alfo fometimes expreffes the conjuuction of all virtues: And it may bear that fenfe here. The character (27) Hoans, when analyfed, is found to be compofed of $T \int e$, which fignifies of himfelf, and Wang, which tranflated is reigning. It is under this furname that the faid emperor has been interred among his anceftors; and it is under the fame that hiftory will make mention of him for the future Upon his afcending the throne, after a father who had conquered Cbina, he affumed for the epocha of his years the two letters Kang bi, the meaning of which is folid peace, or lafting and glorious tranquility. Thus becaufe in the 38 th ($35^{\text {th }}$) year of his reign be conquered by his generals a prince of Tartars, named Kaldan, this vietory is faid to be gained the 38 th year of Kans hi, or of the lafing and glorious tranquility.
The letters (28) Tn Tchin compofe the name of his 4 th fons who now reigns: Wherefore the ufe of thefe letters is and will be prohibited till a new government. As to the title of canonization, hy which this prince is to be recorded in hiftory, if will not be given him till after his death. But upon his acceffion to the crown, as he had a great number of brothers and nephews, he took for epocha of his reign the two letters (29) Yong Tibing, which fignify direct concord, to give to underftand, that if his brothers and nephews pay him the refpeet and fubmiffion they owe him, he would treat them kindly. The empret's his mother died fome few months after he began his reign : So the death of this princefs will be marked in hiftory in the fift year of Yong Thbing, or of the direct concord. Thus will all other incidents be fixed by the years of the dire concord in which they fhall happen.

It is plain from the fe examples, that the names of emperors, and of their epocha's, are effentially different; and that thofe of the epocha's contain very inftructive meanings, the underftanding which muft be of confiderable fervice, as to the clearing up of hiftory. But there is great danger left the name of an epocha be made the name of an emperor; which would double the

H8 MEMOIRS of the

number of emperors, fuppofing even that each of them had talen but one epocba during his reign. No European writer, M. Foucquet knows of, has faithfully given them. all: But this table preients us with an exact and entre leries of them.

And ftill it is a thing muck to be withed for, to have a faithful explanation of them; a work which would enga'se one in a review of the whole hiftory; but will be underiaken nevertheIefs, if M. Fourquet find it will not be difagreedble to the leared. The inconveniency is that a great number of emperers bave often changed thefe nimes of eprob ha's; but this inconveniency is not found in the dynafty now reigning; tho' in the more ancient it be a very common diforder. Han uou T_{i}, who firlt ineroduced the ufe of epocha's, affumed, during his 54 years reign, to the number of is wesy different epocba's. Several others have followed his example, which cannot but caufe a great deal of confufion in hiftory; if one happened to imagine, as it is natural enough to do, that thefe names of epocha's are the names of fo many emperors. It was of importance to elear up thefe things thoroughly; this the table does: And to avoid mintake, care has been taken to have the emperors names or titles engraved in large characters, and thofe of the epocha's in finall letters. Moreover, where an emperor, not content with one epocko, has taken feyeral, notice is given thereof by an afteriim, placed on one fide of the firt.

In fhort, to leave norhing conjectural, as often as the reader, confidering this table, fhall find two feparate ranks of figures, oppofite to one another, in a feries of feveral lodges, or areola's, dienoting duffereat numbers, he is to remember, that thefe figures mark the years of emperors of two families, which difpute the empire ; one of which being foon to perifh will give room to the other to afcend the throne. The column found under the sinle Sin Koue, that is to fay, the three Kingdoms, is an inflance hereof. This title of three kingdoms denotes the time when Cbina was divided into three different parts; and the eoluan, on the top of which is found that title, in the order of the dynaties, is the twelfth, reckoning from the firft at the reader's right hand inclufive, We fee in the 43 d lodge, that the firi year of the epocha Tai bo, affumed by the emperor Ming Ti, of the family, called Guei, antwers to the fifth year of the chocba Kien bing, affumed by Heou Tibou, emperor of the Han's. The fecond year of the epocha 耳ai bo anfwets to the fixth of the epocka Kien bing; and to of the reft that follow.

Royal Societro

The reafon is that the empire was at that time torn in pieces by bloody wars: The Guei's were getting the upper hand, and the Han's were very near their ruin.

As to a great many lodges that have but one or two figures without any account of hiffory, they are unpleafing blanks; which however the Cbinefe matter not, fatisfied to have an exact feries of their emperors years in thefe lodges. But fuch blanks may be filled by inferting fome confiderable incidents of hiftory; as fome few have already been in the Latin edition, viz. the building of the great wall, the burning of the books, the Cbriftian ara, the introduction of the Cbriftian religion into Cbina, the appearance of a ftar (which the Cbinefe fay was a fign of renewal inc the world) feen in the beavens upwards of 70 days, the true year in which our Saviour was born, 8%. If this addition pleate the learned; it will be no difficult matter to add feveral other incidents, not known in Europe."

The principal advantage of this table is, that in conformity with the moft valued hiftory it fixes the true epocloa of the Cho nefe empire to 4 centuries, or thereabouts, before the birth of our Saviour. By the true epocba of the ermpire M. Foucquea does not mean the beginning of the nation (which is credible, as has been remarked beiore, remount to the next ages after the deluge) but the beginning of the monarchy; which is the time, when the incidents that happened in this nation, appearing grounded on certain truths, deferve the credit of the learned. This important point once cleared up, oughe to put an end to the difputes on the fabulous antiquity of Cibina.

The preternatural delivery of a Foetus by the Anus; by

 Mrr. Giffard; together with an examination of the \mathscr{P} grts by Mr. Nourfe. Phil. Tranf. N ${ }^{\circ} 416$. p. 435 .A BOUT the middle of Auguf 1730 Mr . Giffard was fent for to a woman, who then judged herielf to be between 3 and 4 months gone with child: She had all the fymporms preceeding a mitcarriage, and upon feeling he found the os iti-l co fomewhat dilated; from whence he concluded a mifcarriage would enfue; and therefore ordered what he thought proper to promote it: But he was forretime after informed hy her hatibard, that tho' The before believed that fhe had mifcarried, yet that the now thought herielf quick, as feeling fomething to move within her belly, agreeable to what the had perceived after former quickenngs. Thus is paffed on for about 6 or Y wecks; in which time the grew much bigger, and the motion
became more perceptible : So that there remained no doubt co her being wirh child. About the thied of OEIober, fhe wa: fiefed with violent pains in her belly and back; which increatl ing daily, her fifter came to him on the σ th when he went tto her, and found her labouring under very great pains; and othee complaints like thofe preceeding a mifcarriage, or delivery; But to be better fatisfied, and to confirm his opinion, he pafsic up two fingers into the vagina, in order to examine, whetheet the os tince began to dilute. He there felt an unufual fullnefli and tenfion, which he then judged to be the body of the uteruis funk low into the vagina, and diftending it much, and extend ing backwards and preffing againft the rectum: So the thoe foces could not readily pafs; nor could the, from its preffurre on the neck of the bladder, freely make water. Mr. Giffarci could not find the os tince, tho' he very carefully examined all about with the ends of his fingers; wherefore, he then judged that the fundus uteri mult have receded from its natural pofil sion, and be bent backwards towards the reEtum; in which opii nion he was the more confirmed from the fullnefs, he before ob Served, ftretching backwards; and therefore concluded that thee os tince muft be very forward: Wherefore he endeavoured tco pais his fingers between the os pubis, and the fullnefs whicth preffed againtt the upper edge of the faid bone. This he eff fected with tome difficulty; and at length about 2 or 3 inchees above the faid bone, he felt the os tinces with the ends of hiss fingers. The caufe of this fituation will more clearly appear inm the fequel of this account: He ordered the patient anodyne and quieting medicines to relieve her pains, which the was obliged to repeat at leaft every 12 hours, with proper cordials to tup. port nature ; and fometimes clyfters. Thus matters continued to the 20 th of the faid month; only that for fome days before, a water, tinged with blood, came away, as she imagined, thro the anus; and which fhe believed proceeded from the piles, with which fhe was fometimes troubled.

Out the 20 . her husband came to Mr. Giffard about 60^{\prime} clock in the morning, telling hin that the midwife had brought away; a fotus, but could not compleat her bufinefs: Whereupon he immediately went to the midwife, who told him that a fotus: hat come away thro' the anus; and upon examining he found the fuñis umbilicalis hanging out about 2 or 3 inches beyond the anus, and paffing up thro' the fame: He therefore pafs'd his 2 fore-fingers by the ftring into the anus, when abourt 3 inches up he found an opening, as he then judged, into the:
urerus, wide enough to admit the ends of 3 or 4 fingers, and the funis umbilicalis paffing into it; hence be was affured, that the foctus had come out that way. With his fingers paft into the opening he endeavnured to bring away the placenta; but as it was very rotten, intore away between his fingers: So that he was obliged to draw it out in fmall pieces, and at laft io leave a large part of it behind. The Septum or partition between the anuis and vagina was entire, and had no perforation thro' it.
From thefe appearances he then concluded, that a mortification muft have begun in the uterus; and fo from its contiguiry be communicated to the reitum: So that nature endeavouring to expel what was contained therein, and forcing it againt this part, already mortified, and confequently, ready to give way and feparate upon any prefiure made againft it, cauted this opening, and the protrufion of the fatus thro' it into the reitums; and fo thro' the anus.
There was a large difcharge of grumous blood, and other fubftances thro' the anus, which continued cowing away till the 2σ th of the aforefaid month, when the woman died about 30^{\prime} clock in the afternoon.
It is to be obferved, that there was a fullnefs and hardnefs very perceptible, to be felr outwardly in the fore-pars of the belly, fome diftance below the navel, from the time that the fotus came away to her death; which, upon opening the body, he was well affured was the uterus forced upwards and forwards by a Sacculus, which being large and diftended, filled up the pelvis; and by its bu'k prefis'd the uterus forwards. The fortus was perfeet in all its parts, but much wafted and fhrunk from its being fome time dead; and confequently, putrified.
The vagina, uterus, ligamenta rotunda, left ouarium, tuba Fallopiana © ligamentum latumi on that fide, together with the hypogaftric and fpermatic refels on the fame fide, were in a natural ftate. We traced the tuba Fallopiana on the right fide from the fundus uteri almof to the mor Jus diaboli; where it was confuiedly unied with, and opened into the farculus to be defcribed anon. The ovariun on this fide, with the ligamentum latum, was dilated into a large facculus of an irregular form, extending iffelf behind the uterus (to the pofterior paries of which it adher'd) and paffing on towards the left, was connected with that part of the colon that terminates in the restum, and with the rectum. In this facculus we found great part of the placenta, and the remains of lacerated membranes, befides the aperture of the tuba Fallopiana abovementioned; and

Vol. IX. $\mathrm{N}^{\circ} 4$.
another about 4 inches in diameter into the middle of the rectum: That part of the ureter on the right fide, that lies between the ovarium and the kidneys, was dilated; and fo wass that part of the rectum between the aperture into it, and thee end of the colon; both which were caus'd from the contents off thefe canals being obftructed in their paffage.

Fig. y. Plate VI. reprefents the uterus, with the facculus behind it, part of the colon and rectum, the tube Fallopiane, the ovarium on the left fide, the ligamenta roiunda, and theo vagina laid open to the os tince; A the uterus; B the tubar Fallopiana on the left fide; C the ovarium on the fame fide $;$ D the ligamenta rotunda; E the vagina laid open; F thatt part of the colon that terminates in the rectum; G the rectum continued to the anus under the vagina; H the tuba Fallow piana on the right fide whole extremity opens into the facculus; formed from the ovarium; I the facculus extending itfelf behind the uterus, wherein we found the placenta and feveral la. cerated membranes, and from whence there was a large opening into the rectum.

Fig. 2. reprefents the infide of the facculus, and its aperture into the rectum; A the inteftine; B the facculus adhering to it; C the opening from the facculus into the reEfum; D the membranes found within the facculus; E the vagina turned to the right.

A Total Ecliple of the Moon at Barbadoes, July 29, 1729; by Mr. Stephenion. Phil. TranC. N° 416: p. 44 r .

MR. Stepbenfon took care to regulate a very good clock; and brought it to true time about 14 days before the eclipfe. On the day it happened, he faw the fun fet, and found the clock right according to the mean time, allowance being made for refraction. At the beginning of the ecliple, the moon was overcaft.

App. time
h.
7. $180=$ dig. eclips'd, about 30° to the left of her nadir point.
8 II 0 The moon entirely immerged into the earth's Thadow, about 30° to the right of her vertical point.
2 510 She emerged 79° or 80° to the left of her nadir point.

In this and all the other obfervations of folar and lunar eclipfes Mr. Siepbenfon made for feveral years in Barbadoes, he found they always happen'd 10 min . fooner than his computation: Whence he concludes, that Barbadoes lies $2^{\circ} 30^{\circ}$ more wefterly than is generally fuppofed.

The anatomical Preparation of Vegetables; by Albertus Seba. Phil. Tranf. N^{0} 416. p. 44 I .

0NLY thofe leaves of plants are fit for this purpofe, whofe internal itructure is compos'd of woody fibres; and which are of a pretty good thicknefs and confiftence, as the leaves of oranges, lemons, jefmins, bays, rofes, cherries, apricocks, peaches, plumbs, apples, pears, poplars, pines, oaks, ivy, ECC.

There are feveral other leaves which have no woody fibres, or veins ; as for inftance, thofe of vines and lime-trees; but thefe diffolved withour feparating.

Thofe leaves are to be gathered in fune or Fuly, when they are full grown, and have not been damaged by worms, or caterpillars : They are to be put into an earthen pot, or large glafs, with a good deal of rain water, the pot, or glafs, being kept uncover'd; and fo expos'd to the fun, or open air: The leaves muft be quite covered with water, and as it evaporates, a frefh quantity muft be pour'd in. In about a month's time fome of the leaves will begin to purrefy, but the others mult be kept two months or longer. When the two external membranes begin to feparate, and the green fubftance of the leaf to grow liquid; then it is time to perferm the operation. The jeaf, is to be pue into a white and flat earthen plate or difh, filld with clear water; then upon gently fquezzing it with the finger, it will open on one fide, and the green fubftance will run out. Immediately on that, the two nuter membranes muft be ftript off, chiefly in the middle, and along the nerves, where they adhere clofeft : If there be once an opening, they will go off very eafily. The fkeleton that remains between is afterwards wafh'd in clear water, and kept between the leaves of a book.

The method of preparing fruits, as apples, plambs, cherries, peaches and the like, is as follows.

124

MEMOIRS of the

The finef and largeft pears, that are foft and not ftony, aree fitelt for this parpofe: Firlt, they are to be nicely pared with-out fqueefing them, and care taken not to hurt the ftalk, or the crown. This done, put them into a pot of rain, or frefh fpring water, cover ir, and let them boil gently, till they become thot roughly foft; then take them out and put them into a bafon off cold water; then take out one of them, and holding it by thee ftalk with one hand, and with one finger and the thumb of the other hand, rub the pulp gently off, beginning near the ftalk; and rubbing equally towards the apers; and you will eafily feee in the water how the pulp feparates from the fibres, which being tendereft towards the extremities, it is there the greateft care is to be taken. No inftrument is of any ufe in this operation, except laft of all a penknife to feparate the pulp fticking to the core. In order to fee how the operation advances, yous may fling away the muddy water from time to time, and pour: on clean: All being leparated, the fkeleton is to be preferved in rectified fpirit of wine. The fame is to be obferved with regard to apples, plumbs, peaches and the like.
Carrots and other roots that have woody fibres muft be boil'd without paring, till they grow foff, and the pulp come off: Not only feveral forts of roots, but likewife the barks of feverall trees may be reduced after this method into fleletons, prefenting rare and curious views of vegetables.

Effects of Thunder and Lightning in Carmarthenfhire; by Mr. Davies. Phil. Tranf. $\mathrm{N}^{\circ}{ }_{4}^{16}$. p. 444.

ON the 6th of Wecember, 1729, in the afternoon, there happened terrible thunder and lightning, which alarmed the whole neighbourhood; and about 4 o'clock or therea: bouts, as the wife of one William Griff. Morgan of Pencarreg was carrying a pait of wiater into the houfe, fhe was no fooner come weer the threfhold into a fimall entry that leads rowards the fire, than there broke fuch a violent clap of thunder, afier its fore-runner, lightning, that the and three of her children were inftantly bereav'd of their fenfes, and lay (they know not how long) miferable and ghafly monuments of the terrible hock; and weltring in their blood, before they recovered, and were able to creep to the bed; till the nexr neighbour happened to come in (the husband being then abroad) to affift them. The caufe; whatever it was, whether shander-bolt, thunder-ball, lightning, Efc: ftruck (it is imagined) at the ealt end near the foundation, into the hearth,
and cleav'd in two a thick fone, (commonly call'd in Welfo $P_{\text {entan }}$ of about half a yard in breadth beyond the fire, one part of which remain'd, and that cleft, but the other was Thatter'd into fmall particles and fplinters, and thofe fhot into their flefh; which (it is prefumed) did the moft hurt. About 24. fplinters and upwards were from time to time taken out of the wounds. It appears, that afterwards it forced its way out thro' the wall on the fouth-fide within the compafs of the hearth, when it made a terrible breach from top to bottom, and remov'd the flones from the foundation and near it mane a deep hole perpendicular in the earth; fo that one might thruft in a ftaff to the wrift. By its violence, the brandirons and the legs thereof were ftrained; and when they endeavoured to bring them to their former pofition, they were burnt up in fuch a manner, that they fell afunder like rufty iron, or worm-eaten timber. The partitions in the houfe, which were of no ftrong materials (being wattled, as is ufual in country houfes) were mov'd out of place, and a cheft full of corn forced down towards the door, fome yards from the place where it had flood. The bucket the woman had in her hand, and the other wooden veffels in the houfe, were all, or moft of them fhatsered; difhes and fpoons, \& \mathcal{C} ? blown off; and fome days after, found in the garden, on the north fide of the houfe, fplit and broken; and fome yarn, that was hanging in the top of the houfe, was a while after found orit of doors.

The woman quite loft her left eye; The was fpeechlefs for a week or nine days, and could not fwallow. She had a few ftones come out of her mouth under the tongue, and other internal parts: the tip of her tongue, as far as could be conjectured, was taken oft; for fhe ftill lifped; three of the fore-teeth of the under jaw were broken, and the lower lip was fit; the fecond and third fingers of the right hand were quite off; and the colour of that hand was like a flame of fire; as if fome igneous particles remain'd in it. She had fuch a terrible gath upon the right Choulder between the joints, that one might have covered an egg therein; and withal very painful; and the had three or more bruifes'upon that arm down to the wrift, fo that fhe was not able to heave or lift it up, without the help of the other hand; as allo feveral ither wounds and bruifes over great part of her body. A boy had his hair all finged, his face and breaft all fcorch'd

126

MEMOIRS of the

with blifters, like bladders, running from the raw flefh, with feveral fplinters of ftones taken out of his body and legs; and two other fmall children fuffered greatly: So that the woundss were reckoned to be 30 at leaft, between the mother and children : Only one girl about 10 years of age, that ftood att a diftance next the doors, efcap'd, having her cloathis onlyy finged, and no hurt done her. There were feveral fplinterss of bones taken out in dreffing their wounds. It is alfo worth obferving, that they fmelt to ftrong of the fulphur and bitu-minous matter for fome days, that one could hardly bear it... They now are free from any grievous pain; fo that they goo about.

An Account of the Operation of Bronchotome; by Dr. Martin. Phil. Tranf. No $4^{16 .}$ p. 448.

AYoung lad being in a good ftate of health, was all of a fudden taken ill with a violent pain in his throat; im which, however, Dr. Martin could fee nothing amifs, the amygdale, and other parts in view, being in all appearance found enough, only lookirg a little dryer than ordinary; without any external tumour appearing about the larynx; and no confiderable frequency or ftrength in his pulfe. But he had grear pain, and a dy/pncea, together with an impoffibility of fwallowing either liquids or folids, every thing returning forcibly by the mouth or nofe, when he made am effort to get it down. From all which the Dr. reckoned it am angina of the worlt kind (fine apparente tumore vide Hippocr. SPrognof. xxili. 3. \& (Prenot. coac. iii. 96.) and the feat of the difeafe in the laryins and fibres common to it and the top of the gullet,
Norwithitanding repeated bleedings, bliftering between his fhoulders, cupping, efor the difeate continued fo obftinate, and the parient fo like to be fuffocated, that next day in the afternoon his friends, tho' very averfe in the morning, when the Dr. firft propos'd piercing the wind-pipe, at length earnefly defired that the operation might be performed. We direstly fet abour the operation, which was done with fuch fuccefs, that in lefs than four days, his breathing being perfeatly eafy, and his deglutition almoft fo, we remov'd the canula, and left the glottis to do its own office:

According to Colius Aurelianus, Acut. III. 4. and the author of the liber introductorius cap. 13. afcrib'd to Galen, Zirancbotomy was propofed by Afclepiades (however incon. fiftent
fiftent with his delicacy, and the reft of his charaEter, the feeming har'hnefs of this operation may appear) and is defcribed and earneftly recommended by almoft all the fyftematical writers of furgery from \mathcal{P} aulus of $\not \subset g$ ina, de re Medic. VI. 33. and as he fays, Antyllus, and fome others of the belt furgeons before him, down to the prefent times.

But when they are at fo much pains to defend the reafonablenefs of it , and when they fhew fo much fondnefs of citing and telling examples of the healing accidental wounds of the trachea, without ever mentioning their own regular performances of the operation (which would have been a fhorter, and much more effectual recommendation of it) when the Dr. confiders all this, he finds himfelf obliged to think, that it has very feldom been reduced to practice. So rare had it been, that Areteus, a man of vaft judgment and fkill in difeafes, Cur. Acut. I. 7. thought the operation had never been actually performed with fuccefs. And Calius Aurelianus look'd on it as an impracticable whim of Afclepiades. Neither Avenzoar Medic. r. x. 14. nor Albucafis, Chirarg. ii. 43. knew any of their countrymen, who had undertaken it. And the - Arabions are reputed to have been hardy furgeons enough. The moft the Dr. knows amongtt them of this kind is in Avenzoar, who tried the experiment on a goat, and cured the wound, which thews the ingenuity and induftry of the author: For, as to what one may find in fome writers, that Rafes Contin. vit. Fol. m. 77. Faw Andrufius the phyfician perform it (the copy the Dr. look'd into, printed at Venice 1505, calls him Ancilifjus; and probably, it fhould be Antyllus for them both) he thinks this is owing to a miltaken interpretation of that author's meaning. If one read the whole context, he will eafily conceive, that all he fays of the operation is upon hearfay; and confequently, that he had only feen in books, that fuch a one had performed it. That moft accomplifh'd anatomint and furgeon Fabricus ab Aquapendente, Operat. cbirurg. xLii: p. 477. frankly acknowledges, that neirher he nor any of his cotemporaries had ever ventured to perform it. Neither does his fucceffor, in the profeffion of furgery, and his rival in anatomy, fulius Caflarius of Placentia de voc. org. 1. 20. pretend to have done it; tho' he has endeavoured to illuftrate the operation by fome yery neat figures; which you will not readily fufpect to be from any but dead bodies. And next to him M. Aurelius Severinus, Cbirurg. effic. ii. 40. who was a very judicious

128

MEMOIRS of the

and learned man, and the beft and boldeft furgeon of his time; tho' he recommend it with a great deal of warmth and keennefs, yet it feems even in his latter days, he never had occafion to try it : So that the firt undoubted and diftinctly recorded hiftory the Dr. can find of this operation bein! actually practis'd, is in the learned Anton. Mufa Brafavohus? Com. in Hippocr. de dicet. in acut. Iv. 35 . who performed ii in a deiperate fquinance, when the furgeon refus'd to do it and repeated it again in the like cafe. M. Arnaud performec it, but his patient died, vide Garangeot. operat. chirurg. xxxil p. 489. However M. Binard had better fuccefs, Garangeo ibid. xxxit. p. 498. Dr. Friend Hift. pbyyc. l. p. 2065 cites Purman, performing it; and tells us p. 207. of anothe cafe communicated to him by a furgeon, whom he does nos name. And befides thefe, Dr. Martin believes there are bul few inftances can be produced of any who really performerd the operation on a living perfon. But he heard that one Mri Baxter, a furgeon in Coupar of Fife, and Dr. Olipbant in Gask in Pertlbpire, did it with very good fuccefs within thefic few years.

In the actual performance of the operation they certainl did, or might have obferv'd fome things omitted by authors and even fome not perfectly agreeing with the common ac: counts given of it. Dr. Martin thinks it worh obferving, thai in the very cutting, before he got a free paffage into the trachea, and the connula was introduced, the patient fel dome relief; which be thought might be afcrib'd to the effur fion of blood in the operation; a tmall quantity evacuated fic near the part affected, could not, according to the true law of hydraulics, and the obfervations and practice of the ancient (however difagreeing with Bellini's theory) but make a mors confiderable revulfion, than a much greater quantity taken away at a great diftance: Whence the judicious Fab. ald Aquapendente p. 480. with very good reafon fuppos'd tha by the derivation here, the patient would be more apt th feel fome relief than trouble; which fulius Guafavinu. likewife made no doubt of in his difpute upon this fubject. againft Areteus, vide M. Aur. Severin. p. 103. And now their fuppofition and conjeEture is confrmed by experience And fince there continued a greater flux of blood to the wound while it was fuppurating, Dr. Martin reckoned the circulation in the mufcles of the larynx to be with lefs force than ordinary ; and fo probably to contribute to diminith the ftrength
ftrength of the voice, which, for a good many days after the operation, was obferv'd to be much weaker than it us'd to be. Which he all along took to be rather owing to this, and the lownefs of the patient's body by his flender dier, $\xi \xi_{c_{0}}$ than to any hurt done the recurrent nerves; which being cut, do, it is true, deftroy the voice ; but by thetr deepnef's are in lefs hazard than fome in old times used to think.

In performing the operation on a living perfon, one cannot but remark at the sery firf, that the cannula hould not be made near fo thort, as is commonly propos'd in books, and chirurgical lectures: For, be found thar upon cutring the parte, efpecially the thyroid gland (which is not fo much minded in moft of the common defcriptions of this operation, as it fhould be) they foon become tumified in fach amanner, as to require a cannula above an inch long, to penetrate fafficiently into the afpera arteria; which is more than double Garangeoi's allowance of fix lines; one of the lateft writers, and who has communicated to us all the furgery the Frenclo are mafters of. The cannula made ufe of was too long and too fmall, being the common connula for tapping in the dropfy, flatten'd a little at the end, and hindered by a very thick comprefs, perforated in the middle, from penetrating too deep into the trachea.

The mucous particles and fteams, arifing from the lungs, caus'd a continual weeping of a thin flavery liquor from the mouth of the cannula; patt of which thickening and ftuffing its cavity, did fometimes thereby very much incommode the patient's refípiration: So as to render it neceflary to have it taken our and clemed. And hence when fome moderns very precilely bid us put a thin fice of foonge, or a bit of mulin, \&c. clofe over the orifice of the camnula, to prevent the ingrefs of duft, down, \&cc. into the lungs; it confirms what the Dr. Gaid before of the unufualnefs of the operation; and looks as if they had only coafider'd the matter in the abftract, without confidering they had not to do with a pure thin dry air, but with a heterogeneous fluid, moiftened and thickened with vifcid particles, apt to run together into Riff concretions. And therefore, tho it maft be acknowledged, that there would have been lefs hazard of a floppage, if the connula had been fhorter, and wider, efpecially at the mouth. The Dr. cannot but think it an ingenous propofal of one of the ir minifters, to make tha cannula double, or one within another, that the innermot might lafely and eafly be raken ont, and clean'd when necel-

Voe. IX. 4
ik
fay
fary, without any moleftation to the patient: For, it is in fmall trouble to him to have the bandage frequently remov'id and the cannula fitted a new to the orifice, made in the tria chea.

And indeed he found no inconveniency in the patient breathing the air, as it pafs'd thro' the camula, without ann cleanfing or intercepting medium, tho' the houfe was none i the cleaneft. But if by a larger, and confequently a mos patent cannula, a patient, efpecially one of more delicate and ticklifh lungs, fhould be incommoded that way, the D) thinks the ingrefs of duft, E̛c. might conveniently enough bb hindered by a piese of muflin, or thin hair crape, tied loot about the neck over the orifice of the cannula; in fuch a mar ner, however, as not to touch it, or be wetted by the liquec coming from it.

The patient was foon perfeclly recovered: He breathen fpoke, eat, drank, and performed all the other functions co life, and went about his calling as formerly. And here th Dr. cannot but take notice of the needlefs pain fome writer are in abnur healing up the wound by bandaging, ftitching EOc. For, we found it fill up eafily of itfelf in a very fev days, by only dreffing it every other day or fo, with a fot tent, made lefs and lefs every dreffing, and armed in thi common way with Liniment. Arcai. The Dr. believes in deed, it would have taken a little more time to heal, had thi patient been older.
Occultations of Several fixed Stars, obferv'd at Pekin is 1728, 1729. Phil. Tranf. No 416. P. 455. Tranjated from the Latin.

N70 vember 20 . at $5^{h} 0^{\prime} 42^{\prime \prime}$ in the morning the moor covered ν of $L e o$; the place of the immerfion was nearly over againft Rocca.

At $\sigma^{h} 21^{\prime} 55^{\prime \prime}$ the ftar emerging was in a right line with Reinboldus and Grimaldus; confequently the place of the emerfion was near Berofus, and the tranfit almoft central.

Miarch 8. 1729. at $11^{\text {h }}$ 18 p . m. the moon covered the north eaft flar of the trapezium, which is below the feet of Auriga; at $12^{h}{ }^{h} 2^{\prime}$ the flar emerged over againit Meffala.
March 11. at $7^{h} 5 \sigma^{\prime} 3^{\prime \prime}$ in the evening the moon covered n of Cancer; the place of immerfion was over againft Scbick.
sudus: The emerfion which was over againft $P_{\text {etavius, was }}$ obferv'd a little later than $9^{\text {h }} 2^{\prime} 30^{\prime \prime \prime}$; but it fhould have happened at $8^{\text {h }} 59^{\prime}$ nearly.

April 2. in the evening the moon was in conjunction with the Pleiades. At $8^{\text {n }} 2^{3} 3^{\prime} 2^{\prime \prime}$ the moon covered the more northerly little ftar of the equilateral triangle, which preceeds the Pleiades: The place of the immerfion was over againft Pbooyllus. At $9^{\mathrm{h}} 2^{\prime} 2^{\prime \prime \prime}$ fhe abforbed the bright ftar, which is above the Pleigdes, almoft in a right line with Taygetes and Electra: The place of the immerfion feemed to be over againft Cardanus. At $9^{\text {h }} 9^{\prime} 25^{\prime \prime}$ the moon covered Taygete, whofe immerfion was over againft Cabeus near the fouthern cufp of the moon. At $9^{\text {h }} 18^{\prime \prime} 58^{\prime \prime}$ the preceeding far of Sterope immerged over againft Bartolus. At $9^{h} 25^{\prime} 27^{\prime \prime}$ the following ftar near Cafotus immerged.

The emerfions could not be obferv'd by reafon of the exceflive undulation of the lucid limb of the moon.

April 11. at $8^{\mathrm{h}} \mathrm{I}_{2}, \mathrm{p} . \mathrm{m}$. the moon covered v of Leo directly over againft Schickardus, Mefala being at the moon's vertex.
At $9^{\mathrm{h}} 11^{\prime} .30^{\prime \prime}$ the ftar emerged a little below Langrenus, Mercury being at the moon's vertex.

November II. in the morning the moon's tranfit over the 'Pleiades, together with the occultation of the northern ftars, was obferv'd as follows.

4.	51	10	C_{E}
4	53	6	Taygete immerged over againft Cruserus.
5	17	30	The bright ftar of Sterope immerged above Ricciolus.
5	18	20	Maja immerged over againft the weftern cige of Scbickardus.
ร	2 I	-	The ftar following Sterope immerged over againft Rocca. doubtful
5	37	10	Celeno emerged in a right line over againft Petavius.
σ	2	20	Taygete emerged between Langrenus and Mare Crifum.
σ	15	30	Maja emerged to the north of Wendelinus.

The fame day at $7^{17} 30^{\prime} 34^{\prime \prime \prime}$ in the evening χ of Tourus was corered by the moon a little below Galiiceus; and at $8^{\text {h }} 33^{\prime} 15^{\prime \prime}$ it emerged again a little above Langrenus,
A Conjunction of Saturn with the Moon, obferv'd at Pekirn
December 6. ${ }^{1728, ~ N . ~ S . ~ P h i l . ~ T r a n f . ~ N o ~} 416$. p. 4561 Tranfated from the Latin.

D
EC. 6. in the evening Saturn was in conjunction with the moon; bur the thoon not appearing from under the clouds till affer $7^{12} 15^{\prime}$, there were taken only the following diftances of Sarurn from the nearer limb of the moon, whoft diameter was $30^{\prime} 45^{\prime \prime}$.
 ${ }^{5}$ \} dift. 2030 (right line paffing Ifidorus. $33 \int 230$ (fom the N. cufp, Sintbecius. $40 . C_{25}$ 10. Jof the moon thro ${ }^{\circ}$ Petavius.

Ficlipfes of Jupiter's Satellites obferv'd at Pekin, in 1728 1729. Phil. Tranl. No 416. p. 45\%. Iranfated from the Latin.

Immerfions of the I Satellite.
D. H. M. S.

7928 Nov. $5 \quad 1 \quad 42 \quad 45$ in the morning.
I2 $3 \quad 3^{6} \quad 15$ in the morning.
$13 \quad 10+10$ in the evening.
Y) $5 \quad 2820$ in the morning.

20115559 in the evening.
28 I 4450 in the morning.
2981635 in the evening.
Dec. 6 10 8 oin the evening.
12. 53045 in the morning.
$15 \quad 6 \quad 27$ O in the evening.
$\because 28 \quad 17$ o in the evening.
Emerfions of the I Satellite.
4728 Dec. $34 \quad 6 \quad 50 \quad 15$ in the evening:
4929 Fan. $7 \quad 84040$ in the evening.
I6 50 oin the evening.
22. $0 \quad 24 \quad 10$ in the morning.
$23 \quad 5 \quad 52 \quad 20$ in the evening.
$30 \quad 8 \quad 46 \quad 15$ in the cvening:

ROYAL SOCIETY.
D. H. M. S.

1729 Feb . $15 \quad 7 \quad 50$ in the evening. Mar. Io 7 . 2140 in the evening.

179 19 50 in the evening.
24 II 16 is in the evening.
Immerfions of the 1. Satellite.
Nov. $\quad \mathbf{I} \quad 58 \quad 45$ in the morning.
156450 in the morning. 17 I $12 . \quad 15$ in the morning.

Immerfions of the II. Satellite.
Nov. $\begin{array}{lllll}6 & 6 & 8 & 45 & \text { in the morning. }\end{array}$
$\begin{array}{llllll}17.29 . & \text { Dec. } & \text { I } & 3 & 3 & 20 \text { in the morning. } \\ & 8 & 5 & 35 & 55 & \text { in the morning. }\end{array}$ $18 \quad 9 \quad 25-0$ in the evening.

Emerfions of the II. Satellite.
Fan. 252130 in the morning.
5637 o in the evening.
19 II 4415 in the evening.
27220 in the morning.
Feb. 66 '14 18 in the evening:
$13849 \quad 0$ in the evening.
20 II 2845 in the evening.
Mar. 10690 in the evening.
1784940 in the evening-
24 II 30 10 in the evening.
May $20 \quad 8 \quad 49 \quad 30$ in the evening.
Immerfions of the II. Satellite.
Nov. If 1152.25 in the evening.
Immerfions of the III. Satellite.
$\begin{array}{rlllll}3728 \text { Nov. } 6 & 10 & 4 & 10 \begin{array}{l}\text { in the evening it difappear'd } \\ \text { being entirely immersed. }\end{array} \\ 7 & 0 & 47 & 15 \begin{array}{l}\text { in the morning; it began to } \\ \text { emerge again. }\end{array}\end{array}$

134
 MEMOIRS of the

D. H.
$17282 \mathrm{I} 5\left\{\begin{array}{l}\text { in the morning ; entirely imp. } \\ \text { merged. }\end{array}\right.$
17297an. $\left\{\begin{array}{llll}24 & 5 & 24 & 20 \begin{array}{l}\text { in the evening; it difappeared } \\ \text { being entirely iminerged. }\end{array} \\ 24 & 8 & 21 & 40\left\{\begin{array}{l}\text { in the evening; it again began } \\ \text { to emerge. }\end{array}\right.\end{array}\right.$ (. 3 I $92536\left\{\begin{array}{l}\text { in the evening; entirely mm. }\end{array}\right.$ 5729 Feb. I $021 \circ\left\{\begin{array}{l}\text { in the morning; it began to } \\ \text { emerge again. }\end{array}\right.$ Mar. is $933 \circ\left\{\begin{array}{l}\text { in the evening; entirely am- } \\ \text { merged. }\end{array}\right.$ Immerfions of the IV. Satellite.

1729 Fan. 166300 about evening; it immerged.
$16924 \circ\left\{\begin{array}{l}\text { in the evening; it began gradu- }\end{array}\right.$ $16 \quad 9 \quad 24 \circ\{$ ally to emerge again. Mar. $24^{\circ} 64620\left\{\begin{array}{l}\text { in the evening; it entirely gif- } \\ \text { appeared. }\end{array}\right.$ 24 To $1020\left\{\begin{array}{l}\text { in the evening; it began to } \\ \text { emerge again. }\end{array}\right.$ A Total Eclipse of the Moon observed at Pekin Feb. 14. 1729, N. S. Phil. Tranf. No 416. p. 460 . Tranfated from the Latin.

ALL that night it continually fnow'd a little; but the heavens being fo thinly overcaft, the lunar macule could in forme meafure be frequently diftinguifhed; tho more rarely, and with greater difficulty at the time of the immerfion: About the time of the emerfion the fly gradually cleared up, fo that now about the end of the eclipfe it was quite without a cloud.

The clock was corrected by altitudes of Arcturus and Aquila, as alto by culminations of SpicaVirginis and the north fate of Libra. At the beginning of the eclipfe, the moon's diameter, meafur'd with the micrometer, was 32^{\prime}; 'Pythagoras and Helion were in a vertical line to the moon's center.

Time arm.	Phases	
h.	"	The beginning of the eclipfe over against Hevelius.
2	38	30
4.	0	The Shadow at Grimaldus.

Time a. m.
h. , H

24230 Grimaldus entirely immerged.

43	0	
47	0	
48	30	
50	0	The fhadow at
58	0	Galileus. Ariflarcbus. Keplerus. Gaffendus.
Copernicus.		

3330 The fhadow at $\left\{\begin{array}{l}\text { The more eafterly finus oftuum. }\end{array}\right.$ 7ycho.
30 CMenelaus.
$17 \quad 30$
2430 Poffidonius entirely immerged.
$\begin{array}{ll}26 & 0 \\ 31 & 0 \\ 32 & 0 \\ 35 & 30\end{array}$ The fhadow at $\left\{\begin{array}{l}\text { Fracaflorius. } \\ \text { Proclus. } \\ \text { Mare Crifium. } \\ \text { Langrenus. }\end{array}\right.$
39 - The total immerfion between Langrenus and Mare Crifum.
5 If 10 The firft emerfion of light below Grimaldus.
21 O Grimaldus begins to emerge.
2225 Entirely emerged.
28 - Gaffendus emerged.
3035 Keplerus.
3640 The fladow at the centre of Tycbo.
3720 Tycbo entirely emerged.
4035 Copernicus.
4628 Plato begins to emerge.
48 30 Entirely emerged.
50 O Sinus oftuum
5350 Arckytas
5520 Manilius
5715 Ariftoteles > emerged.
5845 Menelaus
59 10. Ariadeus
50 Fracaftorius,
$230 \frac{\pi}{4}$ of the moon's diameter remains in the fhadow.
$\left.\begin{array}{rrl}2 & 50 & \text { Plinius } \\ 5 & 45 & \text { Poflidonius, Vitruvius and Cenforinus } \\ 10 & 0 & \text { Taruntius } \\ 10 & 30 & \text { Procbus }\end{array}\right\}$ emerge.
${ }^{1} 3$ Io Larigrenus entirely emerged.
${ }^{1} 330$ Mare Cirifum begins to emerge.
if 30 Entirely emerged.

136
 MEMOIRS of the

Time a. m.
h.

I
40 The end of the eclipfe over againit Mare Ci
fumm, Oenopides and Heraclides being at th time in a vertical line to the moon's centre.
A Defcription of the Cereus Peruvianus forver'd at Norimbe: in 1730; by Dr. Chriftopher James Trew. Phil. Trat $\mathrm{N}^{\mathrm{o}} .416$. p. 462.

THI S Cereus is 6 foot 3 inches high, and I_{3} inches thic It has 7 angles at its bafe, 8 about the middle, and near the top. Its upper part is of a fea-green, from the powd with which it is covered; its lower, is of a grals-green. Tl down of its prickles is between pale and white about the to every where elfe it is brown.
Sept. 5. 1730 , at the height of 6 feet 2 inches from $t 1$ ground, it thot a round knot from its trunk, which fo encreafe and extended almoft horizontally, that on the 14. of the fam month, it was 8 inches long, and plainly fhew'd a flower, thi ftill clofe, embellifh'd with a beautiful mixture of green, pur ple, and white. The fame evening the flower began to opea and continued till midnight; when being entirely fpread, it w σ inches in diameter. It was of a pretty ftrong, but not vea pleafant fmell. After midnight it gradually contracted about: an inch; and continued fo till next day at noon: Then it bega to contract fafter, to half the diameter of the expanded flower and the next morning it was quire clofed and wither'd; hung on the trunk till Sept. 30. The beginning of the flow was a tube 3 inches long, not quite an inch thick, between yellow and a pale green. Its furfuce was channell'd with fma narrow furrows, between which obtufe protuberances were ol fersed to run, in a parallet order along the ridges. Where thi tube expanded irfelf, it divided into more than 40 petaloid fe. ments, ranged in 6 leparate feries; the 3 inferior and exteric here and there confounded their order, while the 3 fuperior an interior remained regular and unmix'd. Thefe feries. were di tinguifhed by their fize and colour. The firt or exterior wi of the fame colour with the tube, viz. of a pale green, but i upper part gradually inclined to a purple, the fecond and thir had half the ioner part greenih, and the edges of a deepo purple ; the 4 th was between yellow and white, terminating purple tops; the rops of the 5 th were likewife purplifh; th peraloid degments of the oth were very tender and white: Th nated with obture, in the orhers with more and more puinted tops; the inner or fixth feries, which contained 13 of thefe fegments, exhibited all the edges finely and lightly, but irregularly cut and divided. The pifillum of equal height with the furface of the flower, and hollow like a fmall tube, ran, at its upper end, into as many fine pale filaments, fpread in the form of a crown, as there were fegments in the inmoft row, the day before the flower dropp'd from the ovarium; the place where it was to feparate was marked by a blackifh circle, at which the tube feparated iponcancoufly from the ovarium or matrix, that is, the rudiments of the fruit; the pifillum ftill firmly adhering to the ovarium. The flower now fallen, being diffected lengthwife, the origin of the famina lay open to the eye; and it very plaimly appeared that the petaloid fegments of the flower, far from affording the leaft mark of a natural partition, ftuck to very clofe to the tube, that not one of them would quit it without tearing it off with violence.
The fruit, tho it did not come to its full growth, plainly evinced by infpection alone, that it is not prickly. Upon diffection it afforded a vifous juice; and within was a cavity, the fides of which were every where, except at the bottom, thick fet with a vaft many fmall villi, to each of which hung an oblong, white, pellucid veficle, which is the rudiment of the future feed.

Defcription of the Water Works at London Bridge; by Mr. Beighton. Phil. Tranf. N° 417. p. 5 .

TH E wheels are placed under the arches of London-bridge; and mov'd by the common ftream of the tide water of the river Thames.

A B (Fig. ${ }^{3}$. Plate VI.) reprefents the axle-tree of the waterwheel, is foot long and 3 foot in diameter; C, D, E, F are 4 fers of arms, 8 in each place, on which are fixed GGGG, 4 rings, or fets of feiloes, 20 foot in diameter, and the floats $\mathrm{HHH}, 14$ foot long and 18 inches deep, being about 26 in number.

The wheel lies with its 2 gudgeons or centres, A, B, upon 2 brafies in the piects $M N$, which are 2 large levers, whole fulcrum, or prop is an arch'd piece of timber, the levers being made circular on their lower fides to an arch of the radius MO , and kept in their places by 2 arching ftuds, fixt in the ftuck L, thro' 2 mortites in the kever MN.

VoL. IX. 4

MEMOIRS of the

By thefe levers the wheel is made to rife and fall with the tide, which is performed in the following manner.' The levers MN are 16 foot long; from M , the fulcrum of the lever, too O the gudgeon of the water wheel, ' 6 foot; and from O to thee arch at N, io foot. To the bottom of the arch N is fix'd aa ftrong triple chain P, made in the fafhion of a watch-chain, only the links arch'd to a circle a foot in diameter, with notches, or teeth, to take hold of the leaves of a pinion of caft iron $Q, 10$ inches in diameter, with 8 teeth in it moving on an axis. The other loofe end of this chain has a large weight banging to it, to help to counterpoife the wheel, and preferve the chain from fliding on the pinion. On the fame axis is fixt a cog-wheel R, 6 foot in diameter, with 48 cogs: To this is applied a trundle or pinion, S, of 6 rounds or teeth; and upor the fame axis is fixt T, a cog-wheel of ${ }_{51}$ cogs, into which the trundle V , of 6 rounds, works; on whofe axis is a winch or windlafs, W, by which one man, with the two windlaffes raifes or lets down the wheel, as there is occafion.

And becaufe the fulcra of thefe levers, MN , are in the axia of the trundle K , viz. at M or X , in what fituation foever the wheel is raifed or let down, the cog-wheel II, is always equi diffant from M , and works or geers truly.

By means of this machine the ftrength of an ordinary mat will raife about 50 ton weig.

II is a cog-wheel fixt near the end of the great axis, 8 foot in diameter, and 44 cogs working into a trundle K, 4 foot and $\frac{x}{2}$ in diameter, and 20 rounds, whore axis or fpindle is of cafl jron 4 inches in diameter, Jying in braffes at each end, as at X
$\mathrm{Z} Z$ is a quadruple crank of caft iron, the metal being ${ }^{\circ}$ inches"quare, each of the necks being turned one foot from the centre, which is fixt in braffes at each end in two head-ftocks. faftened down by caps. One end of this crank at Y is placed clofe abuting to the end of the axle-tree X , where they are a thofe ends σ inches in diameter, each having a flit in the ends where an iron wedge is put, one half info the end X, the othe half into Y, by means of which the axis X turns round the crank Z Z.

The 4 necks of the crank have each an iron fpear, or rod fixt at their upper ends to the refpestive libra or lever, a 1,2 3, 4, within 3 foot of the cnd. Thefe levers are 24 foor long moving on centres in the frame 6666 ; at the end of which, a $c, 1,2,3,4$, are joined 4 rods with their forcing plugs, working into $d 1_{3} 2,3,4$, four cylinders of calt iron 4 foot $\frac{3}{4}$ long,
 inches bore above, and 9 below where the valves lie, faftened by fcrew'd flanches, over the 4 holes of a hollow trunk of caft iron, having 4 valves in it juft over e eee, at the joining on of the bottom of the barrels, or cylinders; and at one end a fucking pipe and grate f, going into the water, which fupplies all the 4 cylinders alternately.

From the lower part of the cylinders $d_{1}, d_{2}, d_{3}, d_{4}$, come out necks turning upward archwife, as $g g g g$, whofe upper parts are caft with flanches to forew up to the trunk $h b b b$; which necks have beres 7 inches in diameter, and holes in the trunk above, communicating with them, at which joining are placed 4 valves. The trunk is caft with 4 boffes, or protuberances, ftanding out againft the valves to give room for their opening and Shutting; and on the upper fide are 4 holes ftopped with plugs, to take out on occafion, to cleanfe the valves. Une end of this trunk is ftopped by a plug i; to the other, iron pipes are joined, as i_{2} by flanches, thro' which the water is furced up to any height, or place required.

Befides thefe 4 forcers, there are 4 more, placed at the other ends of the libree, or levers (not hhewn in the Fig, to avoid confufion, but to be feen on the left hand) the rods being fixt at $a \mathrm{I}, 2,3,4$, working in 4 fuch ey linders, with their parts $d d$, $\underbrace{\circ} \mathrm{C}$. $e e, f, g g$, and i, as before defcribed, ftanding near $k k$.

At the other end of the wheel at B, is placed all the fame fort of work, as is defrribed at the end A, viz.

The cog wheel I The trundle K The fipindle X The crank Y, Z The fucking pipes f

The 4 levers $a c, a c, E \xi c$. 8 forcing rods ad, ad, εf. 8 cylinders $d e$ e, $d e$, E \underbrace{c}. 4. rtunks, à $e e, b h, E_{\text {e }} c$. 2 furcing pipes, as i.

So that one fingle wheel works is pumps.
All which work could not be drawn in one perfpective view, without rendering it very much confus'd.

The following is a calculation of the quantity of water rais'd by the engine at London-bridge.

In the firt arch next the city is one wheel with double work of $\{\boxed{q}$ forcers.

140

One revolution of a wheel makes in every forcer $\quad 2 \frac{x}{s}$ ftroke
So that one turn of the 4 wheels makes 114 ftrokes
When the river is at beft, the wheels go fix? times round in a minute, and but $4^{\frac{\pi}{2}}$ at middle $\} \sigma$ water

The number of ftrokes in a minute 684
The ftroke 2 foot and $\frac{x}{2}$, in a 7 inch bore, raifes $\left.\frac{3}{3}\right\}$ Ale
They raife per minute 2052 Gallons
That is, 123120 gallon $=1954$ hogheads per hour, and at the rate of 46896 hoghieads in a day; to the height of 120 foot.

This is the utmoft quantity they can raife, fuppofing there were no imperfections or lofs at all.

But it is certain from the following confiderations, that no engine can raife fo much, as will anfwer the quantity of water the cylinder contains, in the length of the forcer, or pifton's motion: For,
r. The openitis ind flutting of the valves lofe nearly fo much of that co as the height they rife and fall.
2. No leath -utyg enough for the pifton; but fome water muft continuly flip fqueeze by, when it is raifed to a confiderable height; a when the column is fhort, it will not prefs the leather enough to the eylinder, or barrel : But efpecially at the beginning, or firft moving of the pifton, there is fo little weight on i t, that before the leather can expand, there is fome lofs.
3. And this lofs is more or lefs, as the hiftons are loofer or tighter leather'd.
4. When the leathers grow too foft, they are not capable of fuftaining the column to be raifed.
5. If they be leather'd very tight, fo as to lofe no water; then a great part of the engine's force is deftroyed by the friction.

By forme experiments Mr. Beighton accurately made on engines, whole parts are large and very well executed, they will lore $\frac{x}{S}$ and fometimes $\frac{x}{4}$ of the calculated quantity.

However the perfections or errors of engines are to be compared together by the calculated quantities or forces; For, as they differ in thole, they will proportionable differ in their actual performances.

The power by which the wheels are moved is, as follows.
The weight of the column of water on a forcer 7 inches in diameter, and $I_{2} 0$ foot high.
$\dot{x} x y=49 \mathrm{lb}$. the pounds aver, in a yard neat yr 40 yards high

1960 ll . on one forcer
8 forces always lifting
Thewhole weight on $\} \mathbf{5} 680 \mathrm{lb} .=140 \mathrm{Ct}=7$ tun weight
the engine at once $\}$
Then the crank pulls the libra 3 foot from the forcer, and 8,3 feet from the center.

$$
9 \tan
$$

$$
\begin{aligned}
& \text { 8,3) } 79, \text { I (} 9,5 \text { tun on the crank. tun } \\
& \text { Wallower 2,2) } 9,5 \text { (} 4,3 \text { on the trundle } \\
& \text { The fpur-wheel }
\end{aligned}
$$

The radius of the great wheel
10) $\frac{4}{17,2(1,72 \text { turn }}$
$34,40 \mathrm{Ct}$
But to allow for friction and velocity, may be reckoned $1 \frac{\pi}{2}$ tun.
The ladles or paddles 14 foot long? $\}=22,4$ fquare feet.
18 inches deep
The fall of water is fometimes

2 feet
44, 8
6 Gall. in a cubit foot
) 268,8
10 15. in a Gall.
112) 2688 (24 hundred.

The velocity of the water 4 foot in $2 \mathbf{1}^{\prime \prime \prime}$ of time.
$2 \mathbf{I}^{\prime \prime \prime}:-4$ feet : : $-60^{\prime \prime}:-685$ feet per minute.
The quantity expended on the wheel, according to the velo. city of the ftream 1433 hogfheads per fecond.

But at the velocity of the wheel 645 hogfheads per fecond.
The velocity of the wheel to the velocity of the water, as x to $2=$.

Mr. Beigbton makes the following obfervations on thefe wa-ter-works.

Tho' they may be juftly efteem'd as good as any in Europe yet there are fome things, as he conceives, which might be al ter'd very much for the better.

1. If inftead of 16 forcers they worked only 8 , the ftroke might be 5 foot in each forcer, which would draw a great deal more water with the fame power on the wheel: For, then there would be but $\frac{\pi}{2}$ the opening and fhutting of valves; confequently, but half that lofs: And a 5 foot ftroke draws above double the quantity of 2 frokes of 2 foot and $\frac{\pi}{2}$ each, by near $\frac{\pi}{5}$, in regard the velocity is double; which is the moft valuable confideration in an engine, where the pipes will fuftain fuch force.
2. The bores that carry off the water from the forcers are too fmall ; there being (nearly) always 2 columns of 7 inches diameter, forcing into one pipe of the fame diameter, and $7 \times 7=49+49=98$.

Therefore, thofe pipes of conveyance fhould be near 9 inches in diameter.

The timber-work is all admirably well executed; and the compofition and contrivance, both for ftrength and ufefullnefs, not exceeded by any he has feen.

The cranks of caft iron are better than of wrought iron; by reafon they are very ftiff, and will not be ftrained, but fooner break; and then they are cheap, and new ones eafily put in.

The wedge for putting on, of releafing the crank, and forcers, is better than the fliding fockets, commonly made ufe of.

The forcing barrels, trunks, and all their apparatus, are yery curioufly contriv'd for putting together, mending, altering or cleanfing, and fubject to as little friction as poffible in that .part.

The machine for raifing and falling the wheels is very good, tho' bur feldom us'd, as he is informed: For, they will go a almoft any depth of water, and as the tide turns, the wheels go the fame way with it.

There

Thefe engines at London-bridge are far fuperior to thofe fo much famed at Marly in France, in regard the latter are very ill defign'd in their cranks, and fome other parts.
A Stone broken in the Bladder, and voided tbro' the Urethra; by Dr. Heifter. Phil. Tranf. $\mathrm{N}^{\circ} 41$ \%. p. I_{3}. Tranfated from the Latin.

0NE Widmannus, chief oeconomift of the fecular monaftery of Marienthal, in the territory of Brunfroick, a man upwards of 60 years of age, but robuft, and wont to live hard, had at firft for feveral years been troubled with frequent and violent fits of the ftone in the kidneys, and at times voided thro' the uretbra, not without exquifite pain, a large quantity of calculi, feveral of which were bigger than a pea: But at length, namely 4 years fince, he felt all the fymptoms of the ftone in the bladder; fo that when he made water, it was with a moft exquifite pain in the region of, the pubis and perincum. In 1728, after he had for fome time us'd feveral medicines, efpecially the tinctura anti-nephritica, Lipflenfis or Rothiana, as they call it, and at the fame time conftantly ufed for his ordinary drink that kind of beer (famous in thefe parts for the ftone) brewed at Koenigs-Lutter, a town in $\mathcal{B r u n f w i c k}$, and called ©Duchftein, and upon that account exported into foreign countries, he fometimes felt violent pains in making water, a $n i / u s$ and a confriction in the bladder, and as if one or more calculi were broken and fplit therein: Upon which he immediately voided with his water fome bits of a broken calculus, which for feveral days after were followed by others; till at length by voiding them, he is now healthy and ftrong and free from calculi and all pain. The different colour of the feveral pieces, fome of which were of a dufkifl and others of a yellowifh hue, fomewhat refembling fulphur, plainly fhews that this patient had feveral calculi at the dame rime, and thofe bigger than that they could pafs who'e thro' the uretbra; befides, the different legments of thefe pieces, (fome of which were fegments of a greater, and others of a fimaller arch) evince the fame thing. The patient folemnly aversed he voided above a huadred of thefe pieces: Some of the fe pieces were half as big as one's thumb, and a great many of them were of a fmaller fize; their external fuperficies was convex, and the internal of moft of them concave; and fome of them exhibited the nucleus of a calculus, as it is culled. The number, and the very atpeet of

144 MEMOIRS of the

the bits of broken calculi, do farther confirm their having really come from the bladder, and their having been once whole fones therein, which afterwards were broken, and thrown out ; but: whether by the ufe of the medicines, or of the beer, or by the force of nature, the Dr. 'cannot determine. By the great convexity of the fegments of the bits it may be judged, that hardly any of the calculi were bigger than a nutmeg, and that feveral of them were of a fmaller fize. Yet in the mean time they feem to him to evince, that the folution of ftones in the bladder is not altogether impoffible, tho' probably, it may be a thing; that very rarely happens.

Concerning the Froft in January 1730.1 ; by Mr. Derham. Phil. Tran1. $\mathrm{N}^{\mathrm{o}} \mathrm{H}_{17} \mathrm{p} .16$.

"N Pbil. Tranf. N° 324, Mr. Derbam gave an account of fome of the moft remarkable frofts, he could find any relasion of; and particularly of that grear, and he had almoft faid univerlal one in 1708, which the Royal Society had very good hiftories of from divers parts, and which he in that Tranfaction had taken from the original papers.

In that Tranfaction he has made it very probable, that the greatef defcent of the firits in the thermometer was on D_{e} cember 30,1708 , when the firit in his tube was within $\frac{1}{1}$. of an inch as low, as it is with artificial freezing with finow, or ice: and falt : And in the froft in January ${ }_{1730-1}$ it was almoft, iff nut altogether, as low.
The freezing-point of his thermometer is 10 inches (whichz he calls 100 degrees) above the ball; and the moft intenfe freezing (according to the methods mentioned in that Tranfaction) is juft at, or very little within the ball. And on $F_{\text {fanuary }} 30$, about fun-rife, the thermometer was but an inch, or 10 degrees above the point of extreme freczing; and on February 3 , only at $\frac{1}{2}$ an inch, or 5 degrees. And confidering that the thermomerer he obferved with in 1708, was lefs accurate, and differently graduated from that which he had at this rime, he is apt: to think, that the froff on February 3, was altogether as intenfe, as that on Decomber 30,1708 : For, tho' a frigorific mixture funk the fipirits but one tenth lower in the old thermometer, and about 5 or 6 tenths in that he obferved with at this time; yet he tokes the difference to be little, or none at all, on account of the tendernets of the new above the old glats.

And this degree of cold he takes to be as exceffive, as in any of the years mentioned in the daid Tranfaction; nay, any of
the years when the Tbames at Iondon was frozen over; and he ts fure, colder than in 1716, when that river was frozen over or feveral miles; and booths and ftreets were made on the ice, an ox roafted thereon, ξ^{c}. For, the loweft point of freezing in 1716 was on Fanuary 7, when the firits fell to 35 degrees only, in the thermometer he made afe of at this time: But the true caufe of the freezing of the Thames that year was not barely the excefs of the cold, but the long continuance of it; which was allo the chief caufe of thofe remarkable congelations of that river in 1683 and 1703, when M. Derband faw. coaches driven over the ice, large fires made on it, EֻC.

Scueral Experiments concerning Electricity; by Mr. Sted phen Gray. Phil. Tram. $N^{\circ} 41 \%$ p. 18.

IN February 1728.9, Mr. Gray repeated fome of the experiments he had formerly made, in the firl difovery of an electrical attraction in feveral bodies, not before known to have that property; he made feveral attempts on the metals, in order to fee, whe:her they might not be made to attract by the fame method as other bodies were, viz. by heating, rubbing, and hammering; but withour any fuccefs: He then refolved to procure a large fint-glafs tube, to fee if he could make any farther difcovery with it, having recollected a fufpicion which he had had fome years before, namely, that as the tube did, when rubbed in the dark, communicaie a light to bodies, whether it might not at the fame time communicate an electricity to them; tho he never hitherto tried the experiment, not imagining the tube could have fo confiderable and furprifing an infiuence, as to caufe them to attract with fo much force, or that the attraction would be carried to fuch vaft diftances, as fhall be found in the fequel of this Tranfaction.

Before he proceeds to the experiments, he gives a defcription of the tube: It is 3 loot 5 inches in length, and near 1.2 inches in diameter: He gives the mean dimenfions; the tube being larger at each end than in the middle; the bore was about an inch :- To each end he fitted a cork, in order to keep the duft out, when the tube was not in ufe.

The firt experiment he made was to fee, whether he could find any difference in its attracion, when the tube was fopped at both ends with the corks, or when left open; but he could perceive no fenfible difference: But upon holding a down-feather over againt the upper eni of the tube, he found, that it would go to the cork, being atracted and repelld by $\mathrm{it}_{\text {, }}$ as by Voc. IX. 4

446. MEMOIRS of the

the tube, when excited by rubbing. He then held the feather: over againt the flat end of the cork, which feveral times together attracted and repell'd; at which he was much furpris'd and concluded that there was certainly an attractive virtue communicated to the cork by the excited tube.

He fixed an ivory ball of about 1.3 inches in diameter, with a hole thro' it, upon a fir-ftick about 4 inches long, thrufting the other end into the cork; and upon rubbing the tube, found that the ball attracted and repell'd the feather with more vigour than the cork bad done; repeating its attractions and repulfionss for feveral times together: He then fix'd the ball upon longers fticks; firf upon one of 8 inches, and afterwards upon one of 24 inches long, and found the effeef the fame. Then he mader ufe firft of iron, and then of brafs-wire, to fix the ball on, inferting the other end of the wire in the cork, as before; and hee found that the attraction was the fame, as when the fir fticks were made ufe of; and that when the feather was held over againf any part of the wire, it was attracted by it; but tho it was then nearer the tube, yet its attraction was not fo flrong as that of the ball. When the wire of 2 or 3 foot long was us'd, its vibrations caus'd by rubbing the tube, made it fomewhat troublefome to be managed: This put Mr. Gray upon thinking, whether if the ball were hung by a packthread, and fufpended by a loop on the tube, the electricity would not be carried down the line to the ball; he found it to fucceed accordingly: For, upon fufpending the ball on the tube by a packthread about 3 foot long; when the tube had been excited by rubbing, the ivory ball attracted and repell'd the leaf-brafs, over which it was held, as freely as it had done, when it was fufpended on fticks or wire ; as did alfo a ball of cork, and another of lead, that weigh'd I pound and $\frac{x}{4}$.

After he had found that the feveral bodies above mentioned had an electricity communicated to them; he then went on to fee upon what other bodies the tube would have the fame effect, beginning with the metals, fufpending them on the tube by the method above-mentioned; firft in finall pieces, as with a guinea, a fhilling, a halfpenny, a piece of blockrin, and a piece of lead; then with larger quantities of metal, fufpending them on the tube with packthread. Here he made ufe of a fire-fhovel, tongs, iron-poker, a copper-tea-kettle (which fucceeded the fame, whether empty, or full of cold or hot water) and a filver pint pot; all which were ftrongly electrical, attracting the leaf brafs to the height of feveral inches. Afrer he had
found that the metals were thus electrical, he went on to make trials on other bodies, as flint-ftone, fand-ftone, loadftone, bricks, tiles, chalk; and then on feveral vegetable fubitances, as well green as dry ; and found that they had all of them an electric virtue communicated to them, eirher by being fufpended on the tube by a line, or fixed on the end of it by the method above-mentioned.

He next proceeded to try at what greater diffances the electric virtue might be carried, and having by him part of a hollow walking cane (which he fuppofes was part of a filh-ing-rod) two foot feven inches long; he cut the great end of it, to fit it into the bore of the tube, into which it went about five inches; then when the cane was put into the end of the tube, and this laft excited, the cane drew the leafbrafs to the height of more than two inches, as did allo the ivory ball, when fix'd to the cork and ftick at the end of the cane. A folid cane had the fame effect, when inferted in the tube after the fame manner as the hollow one had been. He then took the two upper joints of a large filhing-rod, the one of Spanifs cane, the other partly wood, and the upper end whale-bone, which, together with the tube, made a length of more than 14 foot. Upon the leffer end of the whale-bone was fix'd a ball of cork of about one inch and a quarter in diameter; then the large end of the rod being inferted in the tube, the leaf-brafs laid on the table, and the tube excited, the ball attra\&ted the leaf-brafs to the height of about three inches by eftimation. With feveral pieces of Spanifl cane and fir-fticks he afterwards made a rod, which together with the tube, was fomewhat more than 18 foot long, which was the greateft length he could conveniently ufe in his chamber, and he found the attraction very nearly, if not altogether, as ftrong, as when the ball was placed on fhorter rods.
May 14, 1729, between 6 and 7 o'clock in the evening, having procur'd a rod of about 24 foot, that confifted of a fir-pole, of cane, and the top of reed, upon the end of which the ball of cork was placed, and the large end of the rod put into the tube about feven or eight. inches; then the leaf-brafs being laid down, and the tube rubbed, the ball attracted and repell'd the leaf-brafs with vigour : So that it was not at all to be doubted, but with a longer pole the electricity would have been carried much farther.

May 16. he made a rod 32 foot long, including the tube; the larger part of it was a fir-ftaff about fix foot and a half long, the reft was of cane, and reed for the top part thereof: All things being prepared as before, the effedt was the fame as in the laft experiment; only the pole bending fomuch, and vibrating by rubbitg the tube, made it more troublefome to manage the experiment. This put him upon making the following experiments.

May 19, about fix in the morning, the ivory ball being fufpended on the tube by a line of packthread 2σ foot long (which was the height Mr. Gray food at in a balcony, from the court where he flood that held the board with the leafbrafs on it) and then the tube being rubbed, attracted the leafbrafs to the height of near two inches, as he that affifted informed him. This was repeated with the cork-ball with the fame fuccefs.

May 3I, in the morning, a line of 34 foot in length was tied to a pole of 18 foot: So that the pole and line together were 52 foot. With the pole and tube Mr. Gray food in the balcony, the afliftant below in the court, where he beld the board with the leaf-brafs on it; then the tube being excited as ufual, the electric virtue paffed from the tube up the pole, and down the line to the ivory-ball, which attracted the leaf-brafs; and as the ball paffed over it in is vibrations, the leaf-brafs would follow it, till it were carried off the board: But thefe experiments are difficult to make in the open air, the leaft wind that is ftirring carrying away the leaf-brafs.

Some time after he made feveral attempts to carry the electric virtue in a line horizontally; fince he had not the opportunity here, of carrying it from greater heights perpendicularly, but without fuccefs, for want of then making ufe of proper materials, as will appear from what follows. The firt method he made trial of was by making a loop at each end of a line, and hanging it on a nail, driven into a beam, the other end hanging downwards; thro' the loop at this end the line with the ivory-ball was put, the other end of this line was by a loop hung on the tube: So that the part of the line next the ball hung perpendicular, and the reft of the line burizontal: Then the leaf-brafs being laid under the ball, and the tube rubbed, there was not the leatt fign of gitra@ion perceiv'd. Upon this he concluded, that when the electric virtue came to the loop, that was furpended on the beą m_{3}
beam, it went up the fame to the beam: So that none, or very little of it at leaft, came down to the ball; which was afterwards verified, as will appear by the experiments that fhall be mentioned hereafter.

Fune 30.1729 , Mr. Gray went to Otterden-place, to give Mr. Wheler a fpecimen of his experiments: The firlt was from the window in the long gallery, that opened into the hall, the height being about 16 foot; the next experiment was from the battlements of the houfe down into the forecourt, 29 foot; then from the clock-turret to the ground, which was 34 foot; this being the greateft height we could come at; and notwirhftanding the fmallnefs of the cane, the leaf brafs was attracted and repell'd beyond what Mr. Gray expected. As we had no greater heights here, Mr. Wheler was defirous to try whether we could not carry the electric virtue horizontally: Mr. Gray then told him of the attempt he had made with that defign, but without fuccefs; as alfo of the method and materials made ufe of, as mentioned above. Mr. Wheler then propos'd a filk line to fupport the line, by which the elearic virtue was to pafs. This Mr. Gray told him might do better on account of irs fmallnefs: So that there would be lefs virtue carried from the line of communication; with which, rogether with the apt method Mr. Wheler contriv'd, and with the great pains he took, and the afiftance of his fervants, we fucceeded far beyond our expectation.

The firft experiment was made in the matted gallery fuly 2. 1729, about 10 o'clock in the morning. A bout four foot from the end of the gallery there was a crofs line, fixt by its ends to each fide of the gallery by two nails; the middle part of the line was filk, the reft at each end packthread, then the line to which the ivory ball was hung, and by which the electric virtue was to be convey'd to it from the tube, being 80 foot and a half in length, was laid on the crofs filk line; fo that the ball hung about nine foot below it. Then the other end of the line was by a loop fufpended on the glafs cane, and the leaf-brais held under the ball on a piece of white paper; when the tube being rubbed, the ball attracted the leaf-brafs, and kept it fufpended for fome time.
This experiment fucceeding, and the gallery not permitting to go any farther in one length, Mr. Wheler thought of another expedient, by which we might increafe the length of our line; which was by putting up another crofe line near

150

the other end of the gallery; and over the filk part of both the lines there was laid a line, that was long enough to be returned to the other end, where the ball hung ; and tho' now both ends of the line were at the fame end of the gallery; yet care was taken that the tube was far enough off from having any influence upon the leaf-brafs, except what paffed by the line of communication: Then the cane being rubbed, and the leaf-brafs held under the ivory ball, the electric virtue paffed by the line of communication to the orher end of the gallery, and returned back again to the ivory ball, which attracted the leaf-brais, and kept it fufpended as before. The whole length of the line was $\mathbf{5 4 7}$ foot.
We then thought of trying, whether the attraction would not be ftronger, without doubling or returning the line, which we found means of doing in Mr. Wheler's barn, where we had a line of 124 foot long, 14 foot of which hung perpendicular from the filk line; and now the attraction was, as we then concluded, ftronger than when the line was return'd, as in the matted gallery.
Suly 3, between 10 and 110 'clock in the morning we went again into the barn, and repeated the laft mentioned experiment, both with the tube and cane; but the attraction was not fo ftrong, as the preceeding evening, nor was there fo great a difference in the attraction, communicated by the folid cane and glafs tube, as one would have expegted, confidering the difference of their lengths and diameters.
We then proceeded farther, by adding fo much more line, as would make a return to the other end of the barn, the whole length of the line being now 293 foot; and tho the line was fo much lengthened, we found no perceivable difference in the attraction, the ball attracting as ftrongly as before. This encouraged us to add another return; bur upon beginning to rub the rube, our filk lines broke, not being flrong enough to bear the weight of the line, when thaken by the motion communicated to is by rubbing the tube. Upon this, inftead of the filk we put up fmall iron wire; but this was too weak to bear the weight of the line: We then took brafs wire of a fomewhat larger fize than the iron wire. This fupported our line of communication. 'But tho' the tube was well rubbed, yet there was not the leaft motion or attraction, communicated by the ball, neither with the great tube which we made ufe of, when we found the tmall folid cane to be ineffefual. By which we were now convinced, that the
fuccefs we had before depended upon the lines that fupported the line of communication, being filk; and not upon their being fmall, as before trial Mr. Gray imagined it might be; the lame effeet happening here as it did, when the line that is to convey the electric virtue is fupported by packthread, viz. that when the effluvia come to the wire, or packthread that fupports the line, it paffes by them to the timber, to which each end of them is fixt; and to goes no farther forward in the line that is to convey it to the ivory ball.

Finding that our filk threads were too weak to bear many returns of line, Mr. Wheler thought of another way of managing them: fo that fewer returns might be upon each filk line; which was by placing two other crofs lines fome feet beiow the upper ones: So that every other turn of line was fufpended by the lower crois line. By this means there was but half the weight of line upon each filk of what there was, when only two crofs lines were made ufe of as before. By this contrivance we could add a much greater length of line without danger of breaking our filk. We then put up a line, that was $\sigma \sigma 6$ foot in length, by eight returns : Then the leafbrafs being held on a piece of white paper under the ivory ball; and the tube, with the other end of the line fufpended thereon, being rubbed for fome time, the leaf-brafs was attracted as manifenly, as it had been with much fhorter lines. We then repeated the experiment with the little fhort folid cane, and found there was fomewhat of an attraction, but not near fo great as with the large tube.

Tho' the going and returning of the eleerric effuria was very furprifing, yet we were willing to try, how far the attractive virtue might be carried in a continued right line; the method of doing which was as follows: That end of the line where the attraction was to be made, was fufpended on a filk line, that was fixed crofs the garret-window on the north fide of the houre, which was by eftimation about 49 foot high: At about roo foot from bience two rods or poles of about ten fort in length, and at two foot diftance from each other, were driven ino the ground in fuch a manner as that they ftood nearly perpendicular. Thefe were in the large garden, beyond thefe ia the large field, that is feparated from the garden by a deep) fis; about the fame diffance from the firft were fixed annther pair of poles; then four others at a like diftance: Upon the ends of there poles were tied the
crofs lines of filk, in order to fupport the line of communication; which being laid on the filk lines, the ivory ball hanging in the gatret window; and the other end of the line being hung by a loop on the tube, the leaf-brafs was held under the ball; and after the tube had been rubbed for fome time, they call'd to Mr. Gray to let him know, that there was an attraction of the leaf-brafs: This was feveral times repeated with fuccefs. Then Mr. Wheler came into the field, and rubbed the tube hinifelf, that Mr. Gray might fee there was an attraction; which he did, tho' he perceived ir not to be fo ftrong, as when the attraction was convey'd by a longer line by returning it, as in the experiments above-mentioned. The length of the line was 650 feet. This was feveral times repeated; but the experiment being made in the evening, at length the dew began to fall. We began about 70^{\prime} clock, or fome little time after; but before 80° clock the attration ceas'd: But whether this was 'caus'd by the dew falling, or by Mr. Gray's being very hot, we could not pofirively fay. This experiment was made fuly $14,1729$.
N. ©. That tho' we call the carrying the electric virtue by the lines in this polition horizontal, you are not to underfand in a ftrict fenfe, as may be eafly perceiv'd by the defcription of the method; and that as the line fwagged down much below the filk lines that fupported it, in the middle part between thofe line's it was dome feet longer than the diftance of the poles.
Some days after this experiment was repeated from the turret clofet window, when the line was 765 fect; and the atraction was no lefs perceivable than in the experiment above-mentioned.

The following experiments, made at Mr. Wheler's, Mew that large furfaces may be impregnated with electric cmovia.

A large map of the world, containing 27 fquare leer, as alio a table cloth, containing 59 fquare fete, being fufpended on the tube by pack threads, became eledrca!: An umbrcllo, suipended by a packthiead, tied to the handle thereof, became trongly elcetrical.

An experiment to fee whether the electric virtue would be any way hindered by the magnetical cffuvia of a loadftone.

The loadfone had a finall key fufpended by one of its aming irons, and both of them were fulpended on the tube
by a packthread, then the tube being rubbed; both the key and ftone attracted the leaf-brafs; the attraction being the fame as that of other bodies.

An experiment made to fhew that the electric virtue is carried feveral ways at the fame time, and may be convey'd to confiderable diftances.

There were made three ftands, each compofed of two upright pieces of fir, fixt perpendicular, near the ends of a long fquare board, near a foot and a half diftant from one another. Upon the tops of thefe were tied threads of filk to fupport the lines of communication with the tube and attracting bodies. One of thefe ftands was placed in Mr. Wheler's great parlour, near the farther end;'; another in the little parlour ; and a third in the hall, which was between the two parinurs: As the other two were one of them to the right, and the other to the left hand, this laft was placed near the hall-window forwards: The two firf were about 50 feet; the other about 20 feet from the place where the tube was held: Then there were taken three fmall iquare pieces of wood, that were tied to three lines of pack thread; thefe were about the lengths abave-mentioned: They were laid on the filk lines; and by loops at the orher ends were fufpended on the sube: Then the leaf-brafs being held under the pieces of wood, and the tube rubbed, they all of them attraited the leaf brafs at the fametime: And fome time after in Mr. Gray's ablence, Mr. Wheler tried a red hot poker; and found that the attraction was the fame, as when cold. He alfo fufpended a live chick upon the tube, by the legs, and found that the breat of the chick was ftrongly eleCtrical.

At Mr. Goifrey's Mr. Gray made the following experiments, Shewing that the electric virtue may be carried from the tube, without touching the line of communication, by only being held near it.
The firf of thefe experiments was made Augult 5, 1929. He took a piece of hair clob; fuch as linen-cloaths are dried on, of about in foot in length; which, by a loop at the upper end of it was fufpended on a nail, that was driven into one of the rafters in the gareer, and had at ins lower end a weight of 14 pounds, hung to it by an iron ring: Then the leaf-brafs was laid under the weight, and the tube rubbed, and being held near the line withour touching it, the lead-wcight atracted and repelid the leaf-brafs for feveral times together, to the height of at leaft three, if not four inches. If the

Vol. 1X. 4
tube
tube were held three or four feet above the weight, there would be anattraction; but if it were held higher up; fo a to be near the rafter, where the weight was fuipended by tha hair-line, there would be no attraction.

An experiment fhewing that the electric virtue may b carried feveral ways at the fame time, by a line of communii cation, without touching the faid line.

There were taken two hair-lines, between four and five feee long; to each of thefe was tied a fquare piece of cork, by packthread; the lines were-fufpended by loops at their uppeet ends upon two nails; near the lower ends there was tied tto the har-lines a piece of packthread, by which there was communication between the two hair-lines; then the leaf brafs being laid under the corks, and the tube rubbed, and held near one of the lines, both the corks attracted : But than which was fartheft much ftronger than that near which tho tube was held. About the middle of the line of communicas tion they both attracted with equal force.

Some time after, at Mr. Wheler's, we made the following! experiment, in order to try whether the electric attraction be proportional to the quantity of matter in bodies.

There were made two cubes of oak, about fix irches fquare the one "folid, the other hollow : Thefe were fufpended by two hair-lines, nearly after the fame manner, as in the expe riment above-mentioned: The diftance of the cubes from each other was, by eftimation, about 14 or 15 feet; the line of communication being tied to each hair-line, and the leaf-brafs placed under the cubes, the tube was rubbed anco held over the middle of the line, and as near as could be guefs'd, at equal diftances from the cubes; when both of them attracted and repell'd the leaf-brafs at the fame time and to the fame height: So that there feemed to be no more attraction in the folid, than in the hollow cube; yet Mr Gray is apt to think, that the clectric effluvia pafs thro' all the interior parts of the folid cube, tho' no part but the furface attracts: For, from feveral experiments it appears, that it any other body touch that which attracts, its att raction ceafes till the body be remov'd, and the other be againex cited by the tube.
The fequel of the experiments made at Mr. Goilfrey's.
Mr. Gray next went on with an experiment to fee if the electric virtue might not be convey'd to a rod, without inferting it into the bore of the tube, or without touching the rod, which he found to fucceed, by fufpending the rod either by lines of filk, or by pieces of horfe-hair filhing lines, placing a ball of cork on the leffer end of the rod.

Auguf 13, 1729. he took a large pole, that was ${ }^{2} 29$ feet long, two inches and a half in diameter at the great end, and about half an inch at the leffer end: It was that fort of wood they call horfe-beech, with the rind on. This was fufpended by two hair-lines of about four foot and a half in length; the firf line was about two foot from the great end of the pole; the other about eighr foot from the leffer end : So that the pole hung horizontal. At the fmall end of the pole was fufpended a ball of cork about an inch and a half in diameter, by a packthread about a foot long, and a frnall leaden ball upon the cork to keep the packthread extended: Then the leaf-brafs being laid under the cork, the tube rubbed, and held near the great end of the pole, the cork-ball attracted the leaf-brafs ftrongly to the height of an inch, if not more : Then the leaf:brais being held under feveral part's of the pole, it was attracted thereby, as Mr. Godfrey obferv'd, but not near fo ftrongly as by the cork.

About the beginning of September 1729, Mr. Gray made the following experiment, which fhews that the electric effluvia will be carried in a circle, and communicated from one circle to another.

There was taken a hoop of about two foot, two inches in diameter; this he fufpended by a hair-line upon a nail, driven into a beam; the line was about four foot long; then the leaf-brafs being laid under the hoop, the tube was rubbed, and held within the hoop, near its upper fide, without touching it, by feveral inches: Then the lower part of the hoop atracted and repell'd the leaf-brats ftrongly; but when held near the lower part, there was very little, if any, attraction. If the tube were held near the outfide of the hoop, it attracted; but ftrongeft, when at the fame time it was held near the knot of the hair-line, by which the hoop was fufpended. To this hoop there was tied a leffer hoop of about a foot and a half in diameter: It was tied to it by packthread; fo as to hang below it about two inches. They were fufpended together by the hair-line; then the leaf-brafs and tube being prepared, as mentioned before, the tube being held near the upper hoop, the lower part of the lower hoop attracted ftrongly; and when held near the upper part of the lower

156
 MEMOIRS of the

hoop, but very weakly: But when held near the lower part ob the lower hoop, there was no attraction.

September 5, Mr. Gray made the following experiment, which Shews that the electric effluvia have the fame effect in a circle when its pofition is horizontal.

He took a large hoop, of fomewhat more than 3 foot diame: ter, and abour 2 inches and a half in breadth; to this were tied, at near equal diltances, 4 lines of twine (i. e. three threadls of packthread wifted together) each about 2 feet 8 inches longy. Thefe were tied with their ends together to a hair-line of aboutt 2 foot and a half long, by which the hoop was fufpended on al nail, as in the wther experiments ; fo that the hoop hung now in a horizontal pofition: Then the brafs-leaf being laid under the edge of the hoop, at between 2 and 3 inches below it, thee tube being rubbed, and held between the cords without touch:ing them, the leaf-brafs was atracted and repell'd for feverai times together; but when held near the outfide of the hoop! oppolite to that part where the leaf-brafs lay, the attraction was much ftronger.

About the latrer end of autumn 1729 , he refumed his enquiry after other electric bodies, and found many more that have the dame property, and may be excited to attract by the famee method: As for infance, the dry wither'd leaves of reeds and flags, grais and corn, both leaves and ftraw; the leaves of trees, as thofe of the laurel, oak, walnut, chefnut, hazle nut, apple and pear-tree leaves: So that we may conclude, that the leaves of all vegetables have this attractive virtue.

Mr. Gray made the following experiments at his chamber March 23,1730 . he diffolved foap in the Thames water; then be fufpended a tobacco pipe by a hair-line; fo as that it hung nearly horizontal, with the mouth of the bowl downwards; then having dipped it in the foap-liquor, and blown a bubble, the leaf brafs being laid on a ftand under it, and the tube rubbed, the brais was attracted by the bubble, when the tube was held near the hair-line. Then he repeated the experiment with another bubble, holding the tube near the fmall end of the pipe; and the attraktion was now much greater, the leaf-brafs being atracled to the height of near two inches.

March 25, he repeated this experiment after a fomewhat different manier: The pipe was now fufpended by two lines of white lewing filk, of about 5 foot and $\frac{x}{2}$ long; thefe were hung ufon 2 nails, driven into the beam of his chamber, about a foost
a foot diftant from each other, by loops at the other ends of the lines, by which the pipe was fafpended; then the bubble being blown, by holding the tube to the fmall end of the pipe, the bubble attracted the leaf-brafs to the height of near 4 inches. This experiment was made in order to fee whether fluid bodies would not have an elefricity communicated to them.
April 8: Mr, Gray made the following experiment on a boy between 8 and 9 years of age: His weight with his cloaths on was 47 pounds 10 ounces. He fufpended him in a horizontal pofition, by 2 hair-lines, fuch as cloaths are dried on: They were about is foot long; with loops at each end. There was driven into the beam of his chamber, that was a foot thick, a pair of hooks oppofite to each other; and 2 foot from thele another pair in the fame manner.

Upon thefe hooks the lines'were fufpended by their loops; fo as to be in the manner of two fwings, the lower parts hanging within, about 2 feet from the floor of the room: Then the boy was laid on thefe lines with his face downwards; one of the Jines being put under his breaft; the other under his thighs : Then the leafbrafs was laid on a ftand, which was a round board of a foor diameter, with white paper pafted on it, fupported on a pedeftal a foot high, which Mr. Gray had frequently made ufe of in his experiments: Upon the tube's being rubbed, and held near his feet, without touching them, the leaf-brafs was very vigoroully attracted by the boy's face; fo as to rife to the height of 8, and fometimes 10 inches. Mr. Gray put a great many pieces of leaf-brafs on the board together, and almoft all of them rofe up together at the lame time. Then the boy was laid with his face upwards; and the hinder part of his head, which had fhort hair on, attracted. but not at quite to great a height as his face did. Then the leaf-brafs was placed under the boy's feet (his fhoes and ftockings being on) and the tube held near his head, his feet attracted, but not altogether at fo great a height, as his head; then leaf-brafs was again laid under his head, and the tube over it ; but there was then no attraction; nor was there any, when the leaf-brafs was laid under his feet; and the tube held over them.

April 16, Mr. Gray repeated the experiment with the boy; but now the attraction was not quite fo ftrong, as at the firft, the leaf-brafs not rifing higher than to about 6 inches. The boy's hands being extended nearly horizontal, Mr. Gray placed a fmall ftand with leaf-brafs under each hand, and the large
ftand, furnifhed as the others, under his face; when the excited tube being held near his feet, there was an attraation by hiss hands and face at the fame time. Mr. Gray then gave him the top of a fifhing rod to hold in his hand; there was a ball off cork fluck on its finall end, under which the leaf-brafs being laid, and the tube rubbed and held near his feet, the ball at-traked the leaf brats to the height of 2 inches; and very vigo-rounly repell'd and attracted it for feveral times together.

April 2 I, Mr. Gray repeated the experiment on the boy, and now he attracted much flronger than at the firft : The leaf.brafs rofe to his face at the height of more than 12 inches: Then he gave the boy to hold in each hand the tops of 2 filh. ing rods, with a ball of cork on each of their fmall ends; then a fmall ftand being fet under each ball, with the leaf-brafs on it, the tube being rubbed and held neai his feet, both the corks: attracted and repell'd to gether ftrongly. The length of each of: the poles was about 7 foot. Then the boy was laid on his left fide, and a fifhing rod, of near 12 feet in length, given him to hold with both his hands; there was a fmall ball of cork at the end of the rod, that was an inch and three quarters in diameter: Then every thing being prepared, the tube held near the boy's feet, the cork ball attracted and repelled the leaf-brafs forcibly to the height of at leaft 2 inches.
N. B. That when Mr. Gray fpeaks of holding the tube near the boy's feet, he means over againft the foles of his feet ; and when near his head, he means the crown of his head: For; when the tube is held above, or over his legs, the attraction is not fo ftrongly communicated to the other parts of his body.

By thefe experiments we fee that animals receive a greater quantity of eleatric effluvia; and that they may be convey'd from them كeveral ways at the fame time to confiderable difances, wherever they meet with a paffage proper for their conveyance, and there exert their attracting power.

In thefe experiments, befides the large ftand abovemention'd, Mr. Gray made ufe of two fmall ones, the defription of which is as follows; the tops of them were 3 inches diameter; they were fupported by a column of about a font in height; their bafes of about 4 inches and $\frac{5}{2}$; they were turned of lignum vi. Te; their tops and bafes made to fcrew on for conveniency of carriage; upon the tops was paifed whire paper: When the leaf-brafs is laid on any of thefe ftands, he finds it is attracted to a much greater height than when laid on a table; and at leaft 3 times higher than when laid on the floor of a room.

Fune 20, 1730, Mr: Gray made the following experiment, Thewing that the attraction and repulfion is as ftrong, if, not ftronger; ' and that the effluvia may be carried to confidetabie lengths, without touching the line by the tube.

There was taken a line of packthread 231 foot in length; it was fupported on 2 crofs lines of blue filk, whofe diftance was near 18 foot: About 4 foot below one of thefe lines was put up another filk line of the fame colour; to this was tied one end of the packthread; at the other end the ivory ball hung; the line was returned over the cro's lines 13 times: Then the leafbrafs being laid under the ball, upon one of the fmall ftands, and the tube excited, the ball attracted and repelld to the height of one of its diameters, which was about an inch and a quarter.

Mr. Gray found by feveral trials, that rubbing the tube, and putting it up between the returns of the line in feveral places, before be went with the tube to the end of the line, much faciJitates and caufes the attraction much fooner than when one ftands with the tube, and applies it to the end of the line only.

Auguf I. 1730 , at Mr. Wheler's was made the following experiment, being an attempt to fee how far the electric virtue might be carried forward in a line, without touching the fame.

This experiment was made by carrying the line out of the great parlour room into the garden, and down the great fiela before it. The line was fupported by 15 pair of poles; eacir pair had a line of blue filk, tied from one pole to the other, the length about 4 feet, equal to the diftance of the 2 poles : About io feet from the window there was a filk line put up crofs the room, upon which that part of the line hung that had the ivory ball upon ir. Below the crofs line of the fartheft pair of poles was placed another crofs line, four feet from the ground, to which was faftened the other end of the communicating line, as mentioned in the experiment above: Then the leaf brafs and tube heing prepared as ufual; the tube being held over the line at feveral diftances, beginning towards that end where the ball hung ; and fo proceeding towards the farther end of the line, the leaf-brafs was attracted pretty ftrongly at the fations, not exceeding 2 or 300 feet; but fill grew weaker, as we came towards the farther end of the line: Yet even at the end of the line, the leaf.brafs would be lifed bv the ball, when the tube touch'd the line, whofe length was 886 feet.

Colour'd bodies, as Mr. Gray difcovered in 1729, attract more or lefs, according to what colours they are of, tho' the

160

MEMOIRS of the

fubftance be the fame, and of equal weight and bignefs; onl that the red, erange, or yellow, attract at leaft 3 or 4 time ftronger than green, blue, or purple: Bur he lately found out new and more accurate method of making thefe experiments.

A remarkable plica Polonica; by Dr. Abraham Vater; toge gether with an Account of the Cause thereof; by Drr Sprengel. Phil. Tranf. $N^{0} 417 \cdot$ p. 50. Tranfared from the Latin.

ACountry woman living in the lands of Prince Radzivil in Poland, being married in the 15 th year of her age, waas in her 18 th feized with the epidemical diftemper of that coum try, which, from the plaitting of the hair, is call'd the Plicai Polonica: She labour'd under it for 50 years together, and font almoft all that time fhe was confined to her bed by arthritic pains, and fpafms, which at length ended in an univerfal ma: rafmus of her body; till fpent with age, the died in her 98 th year. Dr. Flouricke, phyfician to Prince Radzivil, did noti only fee this woman in her life time, and caufe delineate her too the life, as reprefented Fig. 4. Plate VI. but likewife cut the plica off after her death and brought it to Wittemberg. It wass 4 ells long; a palm broad, and 2 inches thick; but it would have been much longer, as Dr. Flouricke affirms, had not az great part of it been confumed by naftinefs, rubbing, and the: length of time the patient kept her bed.

The plica has been always thought to be a diftemper, and to proceed from a fever or convulfions; but for Dr. Sprengel's part, from the beft information be could procure concerning, it, he takes it to be owing to nattinefs, from not combing the hair, nor wathing the head: For, if it were a real diftemper, the people of fathion could no more be free from it than the common people, among whom it only happens. This is confirmed by the following article in the AEFa Brefiavienjia, entituled omanlung bon matur, EGC. for the month of Auguf 1724, art. 17. p. I 26.

- The great number of people in Poldind, who are troubled - with this plica, firf made me refleet, whether it were a real - diftemper or no? Bui 1 am now convinced, that their fwinifh - way of living, and the common opinion fo deeply rooted in - the generality of the people, namely, that this lock of hair - cannot be taken of without danger of their lives, have contri-- buted more to this complaint than any real indifpofition of - body; confidering that it is the middling or poorer fort of people,
' people, who are troubled with it, whom one cannot fee with" - out horror: But no German, of whom great numbers live in 'that country, ever had any fuch thing grow. Several of them,
- who are married to Polifo women, are fcarce able to perfuade
"their wives not to train up their children to this naftinefs. Not
- long fince I faw a fellow at church, who had about 90 of fuch
- locks, banging down, twifted hard like fo many penny cords :
' So that one might eafily have taken his for a Medura's head;
- and it is probable, that, in ancient times, fome fuch locks as
'thefe might have given rife to the poetical fiction of fnakes 'growing on the head, inftead of hair? Be that as it will, it is ' certain, that it is a moft odious fight.'
An unufual agitation in the Magnetic Needle, obferved to laft for fome time, in a Voyage from Maryland; by Captain Waiter Hoxton. Phil. Tranf. N^{0} 417. p. 53°

oN the 2 d of September, 1724, a little afier noon, being ins latitude $41^{\circ} 10^{\prime} \mathrm{N}$. and about $28^{\circ} \mathrm{E}$. difference of longitude from Cape Henry in Virginia, the weather fair, a moderate gale and fmooth fea, Capt. Hoxton's mate, who was on deck, came and told him, that the compafs traverfed fo much that he could not poflibly fteer by it : Upon which the Captain went up, and after trying it in feveral parts of the fhip, found what the mate faid to be true. The Captain then had all his compaffes brought up, and placed in different parts of the fhip, and in places moft remote from iron; and to his great furprife found them all in the fame condition: So that they could not fteer by any of them.

He then new touch'd fome of them with a loadtone; and left that fhould affect them, fent it out to the end of the bow-fprit; but he did not perceive that the new touching was of any fervice: For, they all continued traverfing very tiwiftly, for about an hour after the Captain came upon deck; and then on a fudden every one of them fthod as well as ufual. During the whole time the fhip had very little motion; and there was an azimuth compals, and 4 or 5 others on board.
An Aurora Borealis obferved in New England, OEtober 22, 1730; by Mr. Ifaac Greenwood. Phil. Tranf. $N^{\circ} 418$. P. 55.

THE curora borealis has of late been very frequent with us in Neres England; but none fo confiderable, either for brightnefs, variety, or duration, as what happened TburfVoL. IX. $\mathrm{N}^{\circ} 5$
day night, the 22d of October, 1730. This meteor has been obferved in New England, at different times, ever fince its firft plantation ; but Mr. Greenreood thinks at much longer intervals than of late years, and never to fo great a degree as the prefent infance : Nor indeed is there any recorded in the Philofopbical Tranfactions, that he could think, by their defcription, equal to it ; excepting only that remarkable one of the 6th of March 1716, obferved by the moft judicious and learned Dr. Halley; and in feveral refpects even that muft give the preference to it. And on this account Mr. Greenrwood thought the moft particular account of this meteor would not be unacceptable to the Royal Society; and therefore he fent them all his notes (which are very numerous) relating thereto, almoft to every change and circumflance of the appearance. He is perfuaded there is no better way to arrive at the true caufe of this extraordinary phenomenon, than by attending to the minuteft particulars and circumftances thereof.

OCl. 22 . $1730,6^{\text {h }} \cdot 30^{\circ}$ P. M. there lay near the horizon an extranodinary dufkifh vapour, (as reprefented in Fig. 5. Plate Vi.) reaching from N. W. b. N. to N. E. b. E. The upper edge was the fegment of a circle, whofe greateft height from the horizon was about 15°, bearing nearly N. b. E. adjoining to this was a concentric fegment of a very bright azure colour, of a greenifh caft, ftrongly illuminated, a few degrees in breadth; and then dilated more and more, till it became blended with an extenfive brightnefs or aurora, which lay every where above it for about 45 degrees.

There was in feveral places a faint caft of red. The heavens were every where elfe perfectly ferene; a fmall wefterly wind, and the moon upwards of 80° below the eaftern horizon.
At $6^{h} 35^{\prime}$, two firia rifing perpendicularly from different parts of the illuminated edge of the vapour (which he all along luppofes to continue its figure, when there is no particular int1mation to the contrary) ware of a faint red colour, and reach'd to the height of 45° at leaft.

At $\sigma^{h 1} 40^{\prime}$ the frrice were very numerous to the left, each rifing about 45°; and one in the middle (by which he always means the middle of the northern dufky vapour) rofe to a furFrifing height. It was 8 or 10° in breadth, of a light azure, tinged with green; and in feveral places ftreaked vertically with a bright flame colour. There was alfo N.W. b. N. a large area or body of a very intente red.

At $6^{h} 45^{\prime}$ the whole (as in Fig. 6.) was exceeding luminous. The red was diffus'd in all parts above the greenifh light, which now bounded the dulkifh vapour in the north; and indeed feveral parts of this were likewife tinged with it. But the moft intenfe red was towards the N. W. and N. E. b. E. between which were various pyramidal ftreams of different colours ; fome blue, fome green, other flame-colour'd, צֻc. feveral tinged with, and all terminated by, the diffufive rofinefs. One firia was of a furprifing luftre, of a light azure turned upon green, appearing N. W. b. N. This feene was very beautiful, the height of each column about 45°, and feveral of them well defined.

At $6^{\mathrm{h}} 50^{\prime}$ the enlighten'd part of the hemifphere was every where tinged with red; its horizontal bounds the fame as before; but its altitude was about 70°. Whence it appears the aurora is confiderably extended upwards. The reddifh caft on the right hand from north to eaft was beautifully diftinguifhed into perpendicular frice, which generally obferved the following order of colours, beginning from the eaft; viz. a deep azure, which fucceffively proceeded to the lighteft blues (tho' each column was of fuch intenfity, as to be diftinguifhed from the neighbouring columns) after which follow'd feveral degrees of green, and then of red, the deepeft being an intenfe fcarler. And this order was repeated feveral times, flling up the whole fpace from N. E. to N. b. W. The weftern regions were at the fame time of an undiftinguifhed red. Several of the rifing columns were very exactly terminated.

At $6^{\text {h }} 55^{\prime}$ the red (Fig. 7.) which in the laft lay towards the zenith, became very intenfe; darting to the horizontal vapour, throughout the intermediate fpace, innumerable ftrice differently colour'd. The horizontal dufliifh cloud was lomewhat rais'd, with an apparent fratum of blue juft under it, which was of a fainter caft towards the horizon, as the colour of the fky is when over charged with vapours. The upper furface of red jutted out irregularly, in feveral places, tho' in general well terminated; as Mr. Greenveood has obferved the cafe to be in fome rifing clouds.

At 7^{h} the diftinguifhed red towards the zenith approached nearer to it $;$ it was about 20° broad upon the meridian; and thence tapering to the eaftern and weftern horizon. The whole appearance was of a reddifh hue, and in fome places faintly ftreaked. At this time appear'd E.S. E. confideraEly remov'd from the other phenomena, a remarkable oval, the tranfuerle

164

 MEMOIRS of the diameter erect, about 30° in length, and of a very bright azure. The whole fcene was very beautiful.At 9 h 2^{\prime} and $\frac{1}{2}$ the phenomena were much the fame, only that the reddifh caft had riien, and was now (Fig. 8.) diffus'd to the fouthward of the zenith: The other paits of the northern hemifphere were much like the genuine aurora, interfpers'd with various fmall clouds. There were two diftinguithed parallelogramic area of an intenfe red, nearly 30° in diameter; the one to E. b. N. the other to N. W. which was of the deepeft colour, and crofs'd in the middle with a black bar. 'The bright azure fill remained towards the E.S. E.
At $9 \mathrm{~h} 5^{\prime}$ the whole appearance feemingly vanifh'd, only that the northern regions retained the aurora, which was as bright: as about $\frac{x}{2}$ an hour after fun fet. The eaftern area of red was diftinguifhable, tho' very faint, reaching from 30° to 50° high; ; and in like manner the former area to the N. W. was fomewhat more intenfe. This was the fame as in the preceeding obfervation; and the black bar, mention'd then, appear'd now to be al cloud moving eaftward, part of which was obferved on this red area, and part to the north. And in this view the red vapour appear'd vaftly more diftant than the cloud. There were ieveral fmall fpaces of light interfperfed throughout the fcene.

At 7 h 15 ' the appearance domewhat changed. The area off red N. W. was the moft intenfe. Several rifing columns of ai faint red and blue berween W. and N. a deep red E. b. N. Mr. Greenrxiood all along obferved, that fome of the fixed ftars could be feen thro' all the colours that were fucceffively laid uyon them, tho' with confiderable differences as to obfcurity and clearnefs, according to the intenfity of the colours. There: were no clouds in the douthern regions.

At ' \quad h 20^{\prime} the wind was all along W. and W. b. \mathbb{N}; and if the ftrongeft winds be expreffed by 10 , this was fometimes 2 , and he thinks never lefs than unity. . He was informed that att Bofon, which lies about 3 miles eaftward, it was all the while: to the eaftward of the fouth. The aurora ftill continued of the fame dimenfions; but the edge of the dufkifh horizontall cloud abated much of its brightnels and colour. There were 4 remarkable fpots or area's of red; one E. b. N. one N. E. b. N: very intenfe, as alfo another nearly north; and the laft bore N.W. b. N, which with the E.b. N. was of fome confider-able duration. There were feveral confiderable ferie intermixed with red, and a flame-colour rifing about N. N. W.

At $y^{h} 28^{\prime}$ the rednefs about the north increas'd very much in its dimenfions and intenfity. It reach'd from the north ftar to about 20° upwards, and was exceeding bright for about 12°. It was diftinguifhed into feveral perpendicular columns of various degrees of red, and feveral well defined.
At $\mathrm{yh}^{\prime} 30^{\prime}$ the rednefs N.E. b. N. mov'd weftward, and was confiderably alter'd in that refpect fince the firft obfervation thereof. That about the north ftar was now divided in the middle by a perpendicnlar column very broad, and of a very intenfe yellow light. It appear'd now that this alfo had a flow motion weftward: But the weftern rednefs had all along advanced eaftward at a confiderable rate.

At 7 h 37 ' the 3 red area's, juft mentioned, are (Fig. 9.) now united, and nearly confounded with one another. The diftinction was only as to the degree of rednefs. The aurora, which lay partly under thefe, confiderably abated of its luftre; and the horizontal bounds contracted to about 80°, tho' the altitude was rather increas'd. The eaftern and weftern limits feemed ftill to approach each other very flowly. There was one ftria very confiderable, horizontally pofited, and about 5° broad, of a bright flame-colour, reaching from the horizontal bounds throughout the whole meteor archwife, whofe greateft height was about 5_{5}°.

At 9 h 45^{\prime} the flame-colour'd arch was much diminifhed; the rednefs very evident and contiguous; tho' in fome places of different intenfities, and vifibly increafing about N.b. W. on each fide of which there was a diftinet ruddinefs.

At gh $5 \mathrm{r}^{\prime}$ the diftinct rednefs about N. b. W. changed to a more intenfe uniform rednefs, which feemed to te by the union of the aforefaid diftinct area's ; and the greateft intenfity was in the middle fpace between them, vi¥. N. b. W. At this juncture Mr. Greenzeood was not a little furpris'd with an extraordinary flalh of lightning, very bright, which began about the middle of this congregated vapour, and ran with an oblique undulatory motion for 20° towards the horizon.

At $8 \mathrm{~h} \mathbf{I}^{\prime}$ the rednefs fill continued, but nuch abated.
At $8 \mathrm{~h} 9^{\prime}$ the meteor was fearce to be diffinguifhed bat by the aurora, which reach'd from N. W. to E. in fuch fort of curve, that the higheft part was due north about 40° altitude. There was ftill a reddifh caft N. N. W.

At $8 \mathrm{~h} 30^{\prime}$ the colours were not very confiderable, but the form entirely new : The breadth of the rednefs was from the pole-ftar downwards about 20°; and from thence it ran taper-
ing on the left hand to W.b. N. and on the right to the E. in which points it was of no difcernible breadth. Its upper edge was of the deepeft red, which dilated by degrees to a flamecolour, and could fcarce be diftinguifhed from the neighbouring aurora. However there were 2 fpots, one to the right, and the other to the left, in an extenfive arch of a remarkable fadnefs.
At $9 \mathrm{~h} 25^{\prime}$ this (in Fig. 10.) was an extraordinary beautiful appearance. From the zenith about 20° fouthward an uncommon rednefs was formed into a knot, or canopy, as it were, very diftinctly terminated (efpecially on the fouth parts) about 20° in length, which lay eaft and weft, and little lefs in its dimenfions north and fouth. From this iffued innumerable Arie throughout the northern hemifphere and farther, the horizontal limits being W. S. W. to E. S. E. Thefe frice were difperfed in an exact order, proceeding from the aforefaid knot, as folds equally diverging, and each of the fame colour and brightnefs throughout the whole fpace to the horizon. The order of the colours was very agreeable, interchangeably blue, red, and then flame-colour; each of which was alfo diftinguifhed into frice of various intenfities, from the deepeft to the lighteft blue, from the limits of violet, to a tincture of orange; and laftly, from the colour of the aurora to the brighteff flamecolour. And this order was repeated a vaft many times throughout the whole fcene. The whole was as bright, and in many refpects refembled a feries of rainbows vertically pofited; and in this view the generality of people will always remember it. And indeed were the heavens to be difpos'd into innumerable rainbows (excepting only the greater number of primitive colours) it would fcarce exceed this phenomenon in beauty: And the knot, from whence it feemed to proceed, far furpaffes any of the rednefs of that meteor, and even blood itfelf. Here it may not be amifs to obferve, that the weftern breeze had been for fome time before entirely lulled; nor was there the leaft motion in any part of the heavens.

The northern bank of vapours continued all along, and now reached from W. to E. by S. its, greateft height being about 8°.

At $9 \mathrm{~h} 35^{\prime}$ the blood-colourd knot entirely vanilhed; tho' feveral of the defcending firice remained entire, and in feveral places, parts of others; all in the fame direction, and of a fainter colour than before. The fky was perfectly calm and ferene.

At 9 h 42' the northern regions retained a bright aurora, interfperfed with a reddifh caft. From the zenith was diffufed a

Abstract

very extenfive red vapour, reaching to the fouthward near 30°

 from the zenith; and from thence converging towards the eaftern and weftern horizon, where it met, the one E. by S. and the other W. S. W. The fouthern edge was of the deepeft red, and the moft diftinct red was W.S. W. There appear'd a falling ftar S. W. of a confiderable duration.At ioh 2^{\prime} the meteor was much advanced to the fouthward, its greateft height not being above 40° from the horizon: Its horizontal limits E. S. E. and W. by S. Its rednefs much abated; but the aurora was diffufed every where throughout the fcene, as confpicuous to the fouth, as towards the north parts of the zenith, which was an uncommon fight. The fky was now remarkably hazy, and full of vapours.
At roh 18' the aurora advanced confiderably to the fouthward of the red vapour, which now was much diluted, about 20° in breadth; a part of it at leaft 50° to the fouthward of the zenith, and tapering towards the eaftern and weftern horizon, where the limits were much the fame as before.
At Ioh 25^{\prime} the aurora (Fig. II. in which \mathbb{Z} denotes the zenith, and N.E.S. W. the horizon) feparated from the reddifh vapour confiderably in the upper parts, tho' joined in the horizontal, and not above 25° from the fouth horizon. There was not any diftinguifhable red to the northward, but an arch of the aurora of much the fame height, tho' much inferior in its horizontal meafure. The fouthern and northern aurora were each very bright. There were feveral tranfitory flafhes in feveral parts of the red vapour. At this time the aurora feemed to appertain as much to the fouthern as northern horizon, and the rednefs confiderably more: But there was a confiderable difference juft towards the horizons; the one being covered with the dufkifh vapour fo often mentioned, and the other appearing of its natural blue colour.

At $10 \mathrm{~h} 35^{\prime}$ the appearance was over, excepting a reddifh caft to the eaftward, and a faint aurora in the northern regions, of but fmall extent from the dufkifh horizontal vapour.

At $1 \mathrm{rb} 35^{\prime}$ there were no remarkable phenomena fince the laft. The northern aurora, with the dufkifh vapour, ftill continued, and Mr. Greenzoood thinks, as evident as at any of the foregoing periods.

Here Mr. Greenwood ended his obfervations. He was in. formed by others, who were occafionally on the water, that its beginning was juft after fun-fet, in the form of an extended darking cloud rifing northward; a few minutes after the

168

MEMOIRS of the

appearance of which, there was towards the caftern and weffern regions a very diftinguifhable tincture of red. And the next change was Mr. Greemzood's firft obfervation.

At inh 45^{\prime} it appear'd (as in Fig. 12.) in a new and very furprifing form. The edge of the horizontal vapour was ifrungly illuminated, as if it had been fired; and this was about 8° in height. From bence rofe up continually, following one another, very extenfive horizontal columns of a bright flame colour, which in ficarce a fecond of time reach'd, fome to 40 others above 60° of altitude, and feveral to the intermediate altitudes, Each of thefe columns was as if a horizontal train of gunpow. der had been fuddenly fired, and the flafhes regularly propa.. gated to fuch enormous heights in an horizontal pofirion. And there were innumerable fucceffions of thefe rifing flafhes, the phenomenon continuing nearly a quarter of an hour. This com parifon will alfo illutrate feveral other particulars at this junc: ture. Sometimes there were feveral of thefe flafhes atcending together, at a little diftance from one another, as if there had been feveral horizontal trains fucceffively and almoft inftantane oufly kindled one after another. Somerimes the rifing line o light would be continued horizontally throughout the whold fcene; in orher places 3 quarters, a half, a third, a quarter, E $\mathcal{E B C}^{3}$ of the fame length, as if thefe trains bad been unequally exs tended. Sometimes the fla/h would begin in the middle, ancid run kindling to the extremities: Then at one extremity, mov ing towards the other; and at other times in more places than one : But in all thele varieties, the horizontal motion ceas'd, and the whole became one uniform line, before it had paffed thoo kindleel edge of the cloud, which was not above 8°, as was ob ferved before: And all this may be well reprefented by tho aforefaid trains of inflammable matter, fometimes kindled ir one place, fometimes in another; but always propagated thro the whole train, with to iwift a motion, that there could be no confiderable difference as to the height of one part above ano ther. The greateft extent of thefe horizontal flafhes was from N. W. to N. E. After thefe phenomena the meteor affumer its ufual form, viz. a bright aurora fettled upon a duikilh ho rizontal vapour.

At 2 h the meteor was again formed into much the fame flape, as was defcribed at 9 h , but confiderably of fainter co lours. It alfo vanifhed again in the fame manner.

At $\sigma \mathrm{h} 30^{\prime}$ the aurora continued till day-light; and the phenomena at different-times, and without any certain periods, were much the fame as has been deferibed in one or other of the foregoing articles.

Mr. Gireenzoood concludes by obferving, that the day, before this meteor, was very warm for the featon, tho' early in the morning there was a very confiderable hoar froft: The morning afier was remarkable for an abundant dew; the temperament of the air much the fame as the preceeding day. Albout 8 o'clock the heavens ferene and calm. Barom. 30 in. Thermom. $1 \frac{35}{0}$.

In the figures Mr. Greenreood has attempted the ftereographic projection of the moft confiderable feenes, which may be a confiderable affilante to the imagination.

Mr. Greenseood compared thefe obfervations with what he enuld find relating to the aurora borealis in the Pbiloopopical T ranfactions, \&cc. and he thinks there are few particulars mentioned there, but what occurr'd in this furprifing inflance; fome that are rare are confirmed, and a few are altogether new: But the chief advantage in thefe obfervations he takes to be in the procefs, crifis and decay, which is fo obvious in feveral of the molt remarkable deenes.

> An Account of the Same; by Mr. Richard Lewis. Phil.
Tranf. N 418 . p. 69 .

0CT. 22, 173C, about 6 o'clock in the evening, the north part of the hemifphere appeared of a faint red, the horizon was very dolky, and this rednefs was terminated above by a very dark choud.

As the night advanced, this meteor redden'd, till it became of as deep a colour as blood; and it fpread itfelf to the northeeft. It continued all night; but about 2 o'clock in the morning, Mr. Lesxis obferved, that it fent forth from its north part 2 of 3 ftreams of a whitifh colour, which hot up to the zenith. Thefe emanations looked much like the rays of the fun, when they pafs thro' a dark cloud, when it is faid to be drawing water. He tonk it to be an eurora borealis, but it appeared much fainter than thofe he ob'erved in England.

Dr. Samich Cbew at Maidfone told Mr. Lerois, that he hat for fome days paft, at morning and evening, oblerved feveral fpits in the fun, very plainly with his naked eye; fome of which feemed very large.

The Sequel of a Table, collected from Several ObServations, taken from the Year 1721 to 1729 , in nine Voyages to Hudfon's Bay in North America; by Caprain Chriftopher Middleton. Phil. Tranf. No 418. p. 7r.

THE following table fhews the variation of the compafs according to the latitudes and longitudes under-mentioned, accounting the longitude from the meridian of London.

Lat.

Royal Society.

51
$5 ?$
5

53
54
55
56
57

51
5
5
53
54
55
5
5
5
$\frac{59}{50 \quad 00}=$

172 MEMOIRS of the

Royal Society.
173

Lat.

174 M EMOIRS of the

An extraordinary Inftance of the almoft inftantaneous Freezing of Water; by M. Triewald. Phil. Tranf. No 418. p. 79.

DEC. 15, 1730, M. Trieroald, coming into the hall, in the palace of the Nobility at Stockbolm, where his appagratus is placed (the weather being very cold) was afraid that the glafs for thewing the experiment with the Carteßan devils (or thofe glafs figures in water, which, by the preffure of the air on the furface of the water, are made to change their places, and fink to the bottom of the glafs) would be in danger, if the water should freeze in it. He took it down from the fhelf, and found the water in a fluid fate: But before he would empty the glafs (as fome that were prefent had not feen that experiment) he placed his hand on the bladder tied on the top of this cylindrical glafs, which was of a pretty large fize, 16 inches high, and three inches and a half in diameter, containing three glafs figures; and in that very inftant, and in the fpace of a fecond of time, he found all the water turned into ice; when in that time two of the figures had reached very near the bottom, but the third, as well as they, was fixed in the middle of the glafs, and furrounded with ice as tranfparent as the water itfelf before it congeal'd. than when planted in the Ground; by the Same. Phil. Tranf. $\mathrm{N}^{\circ}{ }_{4} 18$. p. 80.

IN September 1730, M. Triezvald placed fome bulbs of tulips, and other flowers, in water, (as reprefented Fig. 1 3, 14. Plate VI.) at which time he put into each glafs two grains of faltpetre. He kept thefe glaffes in his ftudy, fometimes on a helf, at other times before the windows. In a fortnight's time he began to find that they ftruck new roots; the latter end of November they put forth leaves, and in fanuary they all flowered, as well as if they had been on a garden-bed: Whereas in gardens in Sweden we feldom fee tulips before the latter end of May; and this year, namely 1731, they are later; the ground being ftill cover'd with a deal of ice and fnow.

Tho' thefe experiments feem to be calculated for nothing but amufement; yet M. Trieroald thinks they have furnifh'd him with fome light, as to the rife of the fap in plants. Vide. the Fig. ${ }_{3}$, 14. Plate VI.
Experiments relating to the fame Subject; by Mr. Philip. Miller. Phil. Tranf. No 418 . p. 8 t .

THE glaffes, marked No 1 . were roots of a hyacinth, commonly known by the name of pulchra; $\mathrm{N}^{\circ}{ }_{2}$. were roots of the common oriental blue hyacinth. The flowers of thefe were not fo large, as they are commonly produced, when planted in a bed of earth; but this was occafioned by the bulbs dividing into feveral off fets; cach of which are as fo many different fmall roots, fending forth ftems or leaves. $N^{0} 3$. was a bulb of a tulip, which tho placed on the glafs of water at the fame time as the hyacinths, yet was nor likely to flower in a month. N°. a root of Narciffus; this was likewife as backward as the rulip, tho' placed on the glafs of water at the fame time with the hyacinths; thefe roots were placed upon the glafes the beginning of November 1730 ; at which time Mr. Miller put them into a green-houfe, where the air was kept conftantly in a temperate warmth. The glaffes were fill'd with common Thames water, fo near the top, that when the bulbs were placed upon the glaffes, it might be about $\frac{x}{+}$ of an inch helow the bortom of the buibs. Into thofe gifles, markt N° s. he put a fmall quantity of
common garden mould, to try wherher that would forward their flowering, or increafe their flrength; but he found that all the roots, placed on thofe glaffes, into which the earth was put, were at leaft a fortnight later than the others before their fibres were emitted; and their progrefs was fince much flower. He alfo obferv'd, that the water in thofe glaffes; where the earth was puit, did not wafte above half fo taft, ass it did in thofe glaffes where there was none; which he con. ceives might be owing to the terreftrial matter mixing with the water; and fo rendering it thicker, and lefs capable off being attracted by the plants, or evaporating by the heat. And from thule glafes, where the bulbs did not exactly; cover their necks, the water evaporated much fatter than from thofe where the bulbs didentirely cover the tops of the glafes; fo as to leave no vacuities round them.

In about a month, after the roots were put upon the glaffess of water, they began to put out their fibres into the water $;$ but they did not begin to put forth their leaves, till theirr fibres were extended all over the glaffes, and were almoft ass full grown as at prefent. When their leaves began to appear, the büus of the hyacinth-flowers were foon vifible, and in about three weeks time were fully blown. The tulips and Narciffus's being much more backward than the hyacinthss (as they always are when planted in a garden) thefe fhould! always be placed upon the glaffes of water fix weeks, or twa months earlier in the feafon than the hyacinths, when they are defigned to flower at the fame time, and the precoces: (or early blowing) tulips mould always be chofen for thisi purpofe.

Ey this method a perfon, who has not a garden, may have: fome of thefe flowers growing in his chambers; where, if they are not kept too clofe from the air, or in a place too warm, they will flower almof as well as in a bed of earth, provided the roors are good, and renew'd every year; elpecially the tulips, becaufe they form new bulbs every year, the old ones being always exhaufted in nourithing the leaves and flowers, a new buib is annually produced by the fide of the fowerftem. Mr. Miller has obfery'd the hyacinths to hower two ycars fuccenively upon glaffes of water; but their flowers are very weak the fecond year: So that is is much the betren way to have frelh roots every year.

The fimple Laurel-water, found to be a dangerous Poifon; together with Several Experiments made therewith on Dogs; by $2 r$. Madden; as alfo an Antidote to this Poifon; by Dr. Rutty. Phil. Tranf. No H^{18}. p. ' 84 .

AVery extraordinary accident that happened at Dublin, difcover'd a moft dangerous poifon, and which was never before known to be fo, tho' it hath been in frequent ufe; and that is the fimple water, diftill'd from the leaves of the lauro cerafus. It is at firft of a milky colour, but the oil which comes, over the helm with it, being in a good meafure feparat from the phlegm, by paffing it thro' a flannel-bag, it becomes as clear as common water.

It has the fmell of a bitter almond, or peach-kernel; and has been for feveral years in frequent ufe among houfewives and cooks, to give that agreeable flavour to their creams and puddings. It has likewile been much in ufe among drinkers of drams; and the proportion they generally ufe it in, has been one part of laurel-water to four parts of brandy.

Nor has this practice (however frequent) ever been attended with any apparent ill confequences, till fome time in Septenber 1728, when it happened that one Mary Whaley drank fome of this water; and in about a quarter of an hour after, fhe complained of a violent diforder in her flomach; and from that time fhe loft her feech, and died in about an hour, without vomiting, or purging, or without any convulfion.

Anne Boy e_{e}, who had alfo drank of it, died, without the leaft groan or convulfion.

One Frances Eaton, who, had drank fomewhat more than a fpoonful, found no diforder in her flomach, or elfewhere; but to prevent any ill confequence, fhe took a vomit immediately, and has been well ever fince.

The Dr. went to fee Anne Roy e about 24 hours afier her death; but he could not prevail to have her opened. She was about 60 years of age; her countenance and ikin appear'd well coloured, and her features were hardly altered: So that Whe Jook'd like one aneep. Her belly was not iwelled, nor had the any other external mark of poifon.
Another accident of the like nature happened about four years before in the town of Kilkenny. A young gentleman, fon to one Mr. Evans, miftook a bottle of this laurel-water fur a bottle of pifan. It is uncertain what quantity he drank,

Yor., IX. $;$ that time, becaufe he laboured under a diftemper, to which, or to an improper ufe of remedies, his death was attributed by thofe about him.

The Dr, in order to fatisfy himfelf farther, as to thee effects of this poifon, made fome experiments, in conjunction with a few of his friends; an account of which is as follows.

Experiment 1. OEtober 3, 1728. We gave a large fetting dog three ounces of laurel-water by the mouth. In threes minutes he began to be ftrongly convulfed. His convulfions continued about five minutes, after which the Dr , untied him; he then fell into a moft violent difficulty of breathing which lafted about eight minutes, and abated gradually; uponi which he endeavoured to raife himfelf, but could not. Thee Dr. tied him down again, and gave him an ounce and a halt niore, upon which he funk at once, and without any return of his convulficns, or difficulty of breathing, he expired in two minutes.

Upon opening the fomach, the Dr. found therein thee whole quantity of water he had taken; its furface was cover'd with froth, but it was not otherwife alter'd in its colour, confiflence, or fmell. The infide of the flomach was not at all inflamed, nor was there any vifible alteration in the tunica villofa.

The veins of the fromach, all the mefaraic veins, and likewife the cava, were much difterided with blood; the arteries, on the contrary, were remarkably empry. The liver and gall-bladder were no wife altered. The kidneys were unafually full of blood, and appear'd of a blueifh colour, almoft as deep as that of the violet-plumb. Upon making an incifion into one of the kidneys, the blood flowed in much greater plenty, and was more fluid than ufual. In the heart there appeared nothing preternatural. The brain was nowife aitered.

Exp. 2. October 24. We gave an ounce and a half of the: fame water to a bitch of a fmaller fize; the was immediately let loofe, and in two minutes the loft the ufe of her limbs. She attempted feveral times to raife herfelf and walk, but: She ftaggered and reel'd about, and then fell down. She repeated this inceffantly about five or fix minutes. At laft the was violently convulfed, efpecially in the mulcles that extend the head and fine. For about the face of a minute

She had that fort of convulfion, call'd opifthotonos, the back of her head being drawn almoft to her tail.

After this the vomited plentifully, and her convulions ceas'd. She then lay ftill for feven or eight minutes, labouring for breath (tho' not fo violently as in the former cafe) and foaming at the mouth. We gave her an ounce more of the water; upon which her difficulty of breathing increafed, and fhe died in two minutes.

Upon opening the abdomen, the thorax and head, we found every thing in the fame flate, as in the former inftance.

Exp. 3, October 25. We gave two ounces of the water to a dog of the fame fize with the former, which produced the like appearances as in the foregoing cafe. This dog was half an hour a dying; for the dofe was not repeated; becaufe he did not vomit up what he had taken. Upon opening him, we found every thing in the fame ftate as in the former inffance.

Exp. 4. OEtober 26. We gave two drachms and a half of the water to a dog of a middle fize, and immediately untied him. He then ran about the room very brifkly for about a minute, and feemed to be nowife affected with it; yet he foon loft the ufe of his limbs. He often attempted to raife himfelf and walk, but ftill fell down again before he had mov'd two yards from the place.

After this he vomited plentifuily, confidering that he had fafted 24 hours; upon which he was fiezed with a convulfion more violent than any of the former dogs, efpecially in the mufcles that extend the head and fpine. Thefe convulfions continued about eight or ten minutes; upon their ceafing he lay ftill, breathing deeply, tho' regularly, and feemed to be afleep. In about ten minutes he rais'd himfelf, took fome food, and walked about tolerably well. We left him, and returning three hours after we found him perfectly recover'd.

Exp. 5, October 28. We injected an ounce of the water into the rectum of a frong fpaniel, and let him loofe. In the fpace of two minutes he began to lote the ufe of his. limbs, and to ftagger as the others had done. He was convuls'd more violently than any of the reft, and chiefly in the mulcles of the neck and fpine. The mufcles of his eyes were ftrongly convuls'd; which appearance was not obfẹv'd in the other dogs: He foamed at the mouth, yell'd frequently, and breathed with more difficulty than any of the reft. His convulfions continued 20 minutes; upon their ceafing he lay
quiet, as tho' he flept, only that his eyes were open. His limbs were now become perfectly paralytic. We rais'd him up feveral times, and fet him on his legs; but he did not attempt to ufe them. He continued in this way about 15 minutes longer; and then he was feized with another violent convulfion, which in 5 minutes put an end to his life.

Upon opening the abdomen, we found the veins of the ftomach and guts very much diftended with blood, as in all the former inftances: There was no vifible alteration in the heart, lungs, and brain.

Exp.6. OEtober 30, we injected an ounce and a half of the water, diluted with 3 ounces of common water warmed, into the anus of a fmall bitch: Before we could untie her, fhe was feized with convulfions, and yelled much. She fell as foon as the was loofened, and never after endeavour'd to rife. She had convulfions and great difficulty of breathing for about 2 minutes: She then lay ftill, with her limbs ftiff and extended about 3 minutes; during which time her lower jaw was convulfed, and pulled alternately to and from the upper jaw, with a very quick motion.

After this her limbs became paralytic, and she gafped for breath about 2 minutes longer. She was quite dead in 7 or 8 minutes from the inje.tion of the clyfter.
In the abdomen, thorax, and brain, every thing appeared as ufual.

Exp. 7. November 2, we injected $\frac{x}{3}$ an ounce of the water, diluted with 3 ounces of common water warmed, into the anus of a fimall bitch: In the fpace of 4 minutes the began to breathe with difficulty: We let her loofe, but the was not able to ftand, or walk without flumbling: The mufcles that extend the head were convulfed, and her fore-legs were affected for 3 or 4 minutes with a tetanus, but had no convulfive motion ${ }^{\text {a }}$ She vomited and purged plentifully. She did not yell, nor feem to fuffer much pain, nor did the lofe her fenfes all the time. In half an hour fhe recover'd.

Exp. 8. The next day, we injected a drachm of the water into the external jugular of the fame bitch : She was feifed with convulfions as violent as the former, before we could untie her: They lafted about ; 5 minutes; after which the recover'd gradually, and continued well.

Exp. 9. November 20, we injected 4 nunces of the water without any dilutions by the anus, of a ftrong dog of a middling fize. In lefs than 2 minutes after the injection, he was the ground as foon as his convulfions began, and never once atempted to rife; nor were his convulfions in any fort fo violent, nor did they continue fo long as in the former inftances: He bled at the nofe about 4 fpoonfuls; the blood was of a very bright florid colour; his convulfions lafted about 4 minutes; after which he became entirely paralytic, and died in 3 minutes more.

We found the ftomach, inteftines, liver, $E^{\circ} \mathrm{c}$. in the fame fate as thofe abovementioned. Upon cutting about an inch from the lower part of one of the lobes of the Jungs, the blood flowed from it in great plenty, and appeared more florid and fluid than ufual.

Exp. 10. December 14, we gave 5 ounces of laurel-water by clyfter to a dog, fomewhat of the fize and fhape of the Italian greyhound. He feemed at firft to be noways affected thereby; but in about 5 minutes he began to droop, and lofe the ufe of his limbs. He did not once yell, or ftruggle, as the others had done, but funk gradually, till he became at laft entirely paralytic. He had not any convulfion, only a kind of Jpafmus cynicus, a few minutes before he died; which happened in half an hour after the injection of the clyfter.

Upon opening the abdomen, we found the veins much diftended with blood, as were alfo the veins and finus's of the brain.

Exp. It. December 19, we gave 3 ounces of the water in the fame manner to a cur of the lap-dog fize: He died in 7 minutes, without any convulfion, only a tetanus in the mufles that extend the head.

The lauro-cerafus being an ever-green, and abounding with a hot effential oil, we imagined that other ever-greens might partake of the fame poilonous quality: Accordingly we made trial of a water, diffilled in an alembic, from the leaves of the yew-tree, fo much talked of by the ancients; and whofe very Shade they fuppofed to be fatal to thofe who fat or flept under it.

Esp. 12. We gave 3 ounces of this water by clyfter to a very imall cur dog, but he was not in the leaft affected thereby.

Exp. 13. We alfo gave a young fpaniel by the mouth, 2 ounces of a water, diftilled from the leaves of the bay-tree, without any effect.

Exp. 13. We afterwards made an experiment with the diftill'd water of box-leaves, which had a very ftrong narcotic fmell :

MEMOIRS of the

fmell : We injected 5 ounces of this water by the anus of fmall cur dog ; but he was noways affected thereby, tho' wr kept him I_{2} hours after the operation.

The 2 following experiments were communicated to Dr. Mad den, by Dr. Stepbens.

Exp. 15. Being defirous to know, whether the virulency oo laurel-water were owing to the fire in diftillation, we poureci warm water upon fome laurel-leaves bruifed, and made a froneg infufion of them. We pour'd an ounce of it down a dog? throat, half of which was fuppofed to enter the ftomach, and 5 minutes after, another ounce was given him in like manner: The dog feemed to be fomewhat fick at his ftomach, but wass foon as lively as ever. A few minutes after this, another ouncee was given him by the mouth, of which we fuppofe a fourth part io have been loft. He foon after ftared, and trembled veryy much. In 5 minutes after, another ounce was given him; upon which he trembled as before, but in a little time he appeared eafy and lively.

Imagining that theie fmall quantities lof their power, during the intervals of giving them, in ro minutes after his taking the: former dofe, we pour'd down his throat 2 ounces and $\frac{1}{2}$ at once: He immediately tumbled on his back convulfed, and tumbled over 3 or 4 times, but quickly returned to his feet: He ftaggered, his eyes ftared, and he fat down like a dog that is tired. At length he fhut his eyes, his neck became extended, and we apprehended he was falling into convulfions; but inftead thereof he vomited a vaft quantity of undigefted chyle, in which appeared a great portion of the infufion; after which he feemed to be perfectly recovered.

Exp. r6. In about 25 minutes after, we gave the fame dog by the mouth z, ounces of the juice, exprefs'd from laurelleaves; and in about 10 minutes more, another ounce was given him in the fame manner: In a few minutes he began to lofe the ufe of his hinder legs, but he quickly recuvered them. Upon his taking another ounce foon after the former, he fell into a great difficulty of breathing, and yell'd much. After this he was feifed with very ftrong convulfions, which affected his lower jaw and hinder legs very remarkably.

In about the fipace of 5 minutes, thefe convulfions were fucceeded by an entire refolution of all the limbs; he breathed with great difficulty and very flowly; no appearance of expiration: Sometimes we obferved 2 attempts at infpiration without intermiffion, or clofing of the mouth. At other times there
vas near the fpace of a minute between 2 infpirations. After his he was feized with a trembling in his limbs; and in about of an hour from his taking the laft ounce, he died without iny ftruggling, with his tail extended.
There were feveral other experiments made of the fame kind, by fome Gentlemen of the profeffion, which exactly correfponded with the foregoing, excepting this one circumftance, that they were of opinion, that this poifon occafioned an inflammation in the ftomach and guts.

In order to clear this difpute, we, who were of a different opinion, put together the following hints, from which it appears that the fact is not as they imagined; and that tho we find, upon an animal's being killed by this poifon, that the veins are very much diftended with blood, yet there is not any inflammarion produced by it.

Nothing feems better to illuftrate this matter, than the analogy which may be obferved between the convulfions, occafioned by the epilepfy, and thofe which are the effect of laurel-water. For inftance, in the epilepiy, the body is univerfally convulfed; efpecially the mufcles of the reck, tongue, lower jaw, and thofe of the arms.

The effect of thefe convulfions is this: The heart beats with unufual violence and frequency; the neceffary confequence of which is, that the blood will be thrown in greater plenty from the arteries into the veins. But becaufe the mufcles comprels the veins more than the arteries (whofe fyitole enables them to overcome that preflure) therefore the blood, which is ftill puifh'd forward by the fyftole of the heart into the veins, will be retained there by the aforefaid preffure of the mufcles, and will return in a very fmall quantity to the heart.

For in itance, the abrominal mufles, being convulfed, prefs the ftomach and inteftines upon the afeending cava, and likewife upon the vena porte; by which means the blood, returning from the lower extremities, is retained in thofe veffels. Accordingly we fee the vifible and immediate effects of this preffure are the forcing out the contents of the bladder and inteftimes, and frequently the profuvium feminis.

In like manner the preflite of the mufcles of the neck, rongue, and lower jaw, upon the jugular veins and their branches, will not fuffer the blood to return to the heart by the deicending cava.

To this we may add the preffure of the diaphragm and ribs upon the lungs; by which means the trunks of the afcending and

184 MEMOIRS of the

and defcending cava are compreffed at their infertion into th heart.

Hence follows that frightful blacknefs of the face during th paroxyfm, and the prodigious fivelling of the veins of th head; efpecially the temporal veins.

The neceffary confequence of all this muft be, that if the convulion laft long enough the patient muft die, on account o the blood being thrown out of the arteries into the veins, anc not returning to the heart. And Dr. Madden queftions not that if fuch a perfon were opened afiê death, we fhould finc the cava, the vena porto, the veins and finus's of the brain together with all their fmalleft ramifications, very much dif tended with blood, and the arteries on the contrary almofl empty.
But if the epileptic convulfion ceafe before the circulation on the blood is entirely ftopped, then all becomes calm again, the preflure is taken of the veins, the blood returns to its ufual courfe; and in a few hours the fick perfon is perfectly recover'd

And yet all this violent convulfion of the body, this prodigious diftenfion of the veins, and interception of the courfe of the blood, happen without any inflammation, as appears from the fpeedy recovery of the patient: For, if the convulfion had nccaffoned an inflammation, a fever muft neceffarily have en. fued, which would difoover iffelf by manifeft tokens, and would require a much longer time for its abatement.
Let us now obferve the analogy between thefe appearances, and thofe produced by laurel-water.

We find by experiment, that an ounce, or even two drachms and a half, of latirel water will occafion more violent convulfions than 3 or even 5 ounces of it (Exp. 4, 5 to II.) If therefore an inflammation were the neceffary confequence of this warer being taken into the ftomach or guts, the more violent the convulfion is, the greater the inflammation ought to be.

On the contrary we find, that the more violent the convulion is, the greater the probability that the animal will recover (Exp. 4. to 7.) And when it falls out fo, the manner is exantly the fame as in the recovery of an epileptic pertion. In a few minutes the animal becomes as brifk, as if no fuch thing had happened.

Now if an inflammation were at all the neceffary confequence of this poifon, tho' the animal recover; yet there muft be fome inflammation, more or lefs, produced; which muft occafion
more violent and lafting fymptoms. But fince none fuch appear; fince the recovery is fo fudden and effectual, it is the ftrongeft and plaineft argument that there is not any inflammation produced.

If the laurel-water be adminifter'd to the quantity of an ounce or more, the animal unavoidably dies in a few minutes; and upon opening him the appearences are thefe; namely, both the trunks of the cava, and all the ramifications of the meferaic veins are very much diftended with blood. Thefe veffels are eafily diftinguilhed from the arteries, not only by the thinnefs of their coats, but alfo by the colour which the blood exhibits to the eye. Now Dr. Madden conceives that all inflams mations have their beginning in the arteries; and that they are produced (becaufe there is no free paffage for the blood) into the veins: But if once this paffage become free (as in this cafe it certainly is; for, we find all the veins diftended with blood beyond their natural dimenfions) the inflammation is then at an end, the caufe which produced it being taken off.

Moreover, the fact laid down, namely that the veins are preternaturally diftended with blood, does neceffarily conclude, that the arteries are not diftended with it; and confequently that there cannot be any inflammation: For, if the quantity of blood be increafed in the veins, it mult be proportionably diminifh'd in the arteries.

To what has been faid, may be added the following obfervation; viz. that if there were any inflammation produced by rhis poifon, it ought to appear moft remarkable on the infide of the fomach and inteftines; becaufe of the immediate contact it has with thofe parts.

All other poifons, which occafion inflammations in the ftomach and guts, do firft operate upon the blood-veffels, and corrode the parts inflamed ; they occafion vomitings and fluxes of blood, which at length terminate in convulfions.

One may very eafily be deceiv'd upon opening the ftomach of a dog, and may mittake the rednefs of the tunica villof a for an inflammation.

The inner coat of a dog's ftomach is naturally of a ruddy flefh-colour; and therefore of all domettic animals a dog has the quickeft and ftrongeft digeftion: Accordingly we fee that they fwallow bones, and digett them perfectly well; and tho ${ }^{\circ}$ they be but half chewed, when taken into the ftomach; yet they are at laft reduced to as foft a confiftence as any other part

Vol. IX. 5
A a

186

 M EMOIRS of theof their aliment. It is, for this reafon therefore, that the ftomachs of dogs are more plentifully fupplied with blood than thofe of other animals; by which means not only the mufcular: force of the fomach, but likewife its warmth, which is the principal inftrument of digeftion, is very much increafed.

Bole, vinegar and milk, were given to a dog which had fwallow'd fome of the laurel-water: The bole and vinegar were: not obferved to do much good; but the dog, which drank the milk, recover'd without any bad fymptoms: But at that diftance of time Dr. Rutty could not recollect the proportions that were given: He thinks a pint of milk.

An Account of M. Le Blon's principles of Printing (in imitation of Painting) and of Weaving Tapeftry, in the fame

 Manner as Brocades; by Dr. Mortimer. Phil. Tranf. $\mathrm{N}^{\circ} 419 . \mathrm{p}. \mathrm{roi}$.M.Le Blon, endeavouring to fix the true harmony of colouring in painting, found that all vifible objects may be reprefented by the 3 primitive colours, red, yellow, and blue: For, out of them all others, éven black itfle, may be compounded. We are beholden to the great Sir I faac Newton for the difoovery of the difference of colours, contained in the rays of the fun; and that the union of them all produces white, which is light itfelf.

For diftinction fake M. Le Blon calls thore colours, which are comprehended in the rays of the fon, impalpable colours; and thole ufed in painting, material colours. In the material colours a mixture of all 3 produces a black, or darknefs, contrary to what is obferved in the impalpable, which, as has been faid, produce white.
M. Ie Blon takes this phenomenon to be owing to the body or fubitance, of which thefe 3 material colours confint, and to their particles being opaque, and not tranfparent: For, they only refleat certain rays of light, that ftrike on their furfaces; and therefore when fmall particles of different colours area placed clofe together, if they are fo fmall that each of them cannot be feen fepararely by the eye, we do not difcern the co-t lour of each particular atom, but only the blended refleced rays, priceeding from the adjoining particles: Thus vellow and red produce an orange; yellow and blue a green, Ecc. which feems to be confirmed by placing 2 pieces of filk near each other; viz. yellow and blue; when by intermixing of their
in llected rays, the yellow will appear of a light giteen, and the wise of a dark green; which deferves the farther confideration or the curious.
14. Le Blon has reduced the harmony of colouring in painting to certain infallible rules, built on this foundation: Whereas according to the common practice of painters, their colouring is the effect of mere chance, or guefs-work at firlt, but improved by experience; all painters ufually affirming, that there can be no certain rules given for mixing colours: M. Le Blon publifhed, fome years ago, an ingenious book on this fubject, intituled, Coloritto, or the barmony of colouring in painting.

By thefe rules M. Le Blon light on the manner of printing any object in its natural colours, by means of 3 plates, and of the 3 primitive colours; an art attempted and fought after ever fince the invention of printing; but in vain, and thought impoffible, till he put it in practice about I_{5} years ago. The plates are engraved chiefly after the mezzutinto manner; only the darker fhades, and fometimes the out lines, where they are to appear very fharp, are done with a common engraver. Each plate is not complearly engraved, but only contrived to take iuch a portion of the colour, as is neceffary with the other 2 plates to render the picture compleat.

This art of printing confifts in σ articles, viz. I. To produce any object with 3 colours, and 3 plates. 2. To make the drawings on each of the 3 plates; fo as that they may exactly tally. 3. Te engrave the 3 plates; fo as that they cannot fail to agree. 4. To engrave the 3 plates in an uncommon way; io as that they may produce 3000 , and more good prints. 5. To find the 3 true primitive material colours, and to prepare them ; fo as that they may be imprimable, durable, and beauriful. 6. To print the 3 plates; fo as that they may perfectly agree in the impreffion.

The firft of thefe is the moft confiderable, comprehending the thenretical part of the invention; and the other ; fubterve to bring it into mechanical practice; and of fuch importance, that if any one of them be wanting, nothing can be executed with fuccefs, or exadnefs. Somerimes more than the 3 plates may be employ'd, namely, when beauty, cheapnefs, and expedition require ir.

The obfervation of the compounded colours, refeceed from 2 pieces of filk of different colours, placed near each other, firt gave M. Le Pion the hint of what the effect of weaving thread's A $\begin{aligned} & 2 \\ & z\end{aligned}$
of different colours would be, when all the threads were fo fin as not to be diftinguifhed at a fmall diftance from one another ar

By the fame principles of producing any vifible object with a fmall number of colours, he arrived at the fkill of producing in the loom all that the art of painting requires: An art that hass alfo been often attempted, but as often abandoned; and declared impofiible till now, as well as the other of printing in colours., And it is probable, many improvements may from hence be made in feveral trades, efpecially in combing of wool, where: the mixing of feveral colours may be of confiderable ufe: Butt M. Le $\mathcal{B l o n}$ has not hitherto had time to apply it to any thing elfe, befides painting, printing, and weaving.

The colours made ufe of in weaving being only fuperficial, and fo different from buth the impalpable and material colours ; and not being to be fo clofely joined, or incorporated together: as thofe, will not of themfelves produce a white or black, but: only a light cinnamon: Wherefore, in weaving he hath beent obliged to make ufe of white and black threads, befides red, yellow and blue; and tho' he found he was able to imitate any picture with thefe s colours, yet for cheapnefs and expedition, and to add a brightnefs where it was required, he found it more convenient to make ufe of feveral intermediate degrees of colours.
There are 2 ways in ufe at Brufels, and at the Goblins in Paris, for making tapeftry after the common manner : One they call the flat way, and the other the upright. In the flat way they have the warp ftretch'd in a frame lengthwife of the piece; it is made of white worfted, and the pattern lies clofe under it: So that the workman can fee the figures through the warp : He is provided with bobbins of filk or worfted of various colours, as the piece requires; then hetakes, up with his fingers one thread after another, as they anfwer to any colour in the painting underneath; and with the other hand pafles the bobbin with the fame colour, and ftrikes the threads clofe with an ivory comb. Some of thefe frames are made like a loom, with a warp pais'd thro' the leifhes and tredles for the feet, with which they open the threads of the warp, to pafs a common Shuttle thro' them, when it is neceflary to make a long throw, as is required in grounds, pillars and tall uprights.

In the upright way the warp runs from top to botfom of the piece ; the pattern is placed upright; and clofe behind it, and the outlines are drawn in charcoal upon the forefide of the warp. The workman is placed with his back to the light, by
which means he can fee the pattern better; then he takes up the threads one by one, and paffes the bobbin, as in the other way, and ftrikes it clofe with the comb: All which is near as tedious as needle-work itfelf; which is the reafon why fine tapeftry comes to fuch high prices; and what can be had at a moderate price is always coarfe, and of a low tafte: For, workmen who have any good notion of painting, and are capable of adjufting the colours, are not to be had but for exceffive wages; which does likewife much enhance the price. But in M. Le Blon's. new way of weaving tapeftry in the loom with a draw-boy, it may be performed almoft as expeditioufly as fine brocades: For, when the loom is once fet and mounted, any common draught-weaver, tho' not acquainted with drawing or painting, nay, hardly knowing what figure he is about, exactly produces what the painter has reprefented in the original pattern: And thus a piece of tapeftry may be wove in a month or two, which in the common way of working would take up feveral years; and what in the common way cofts 1000 pounds may, by this means, be afforded finer and better for 100 .

The main fecret of this art confifts in drawing the patterns, from which any common draught-weaver can mount the loom; and when that is done, the piece may be had of any fize, by only widening the reeds and the warp; and a reverfe may be made with the fame eafe; which is done by the boy's pulling the leifhes up again in the fame order in which he pulled them down before; by which contrivance the tapeftry may be fuited to any room, whether the light comes in on the right hand or on the left.

The patterns are painted upon paper, on which are printed fquares from copper plates, and thefe fubdivided by as many lines, as anfwer to the threads of the warp, which run lengthwife of the piece; then they try how pany threads of the fhoot anfwer in breadth to every lubdivifion of the fquares: Every thread of the warp goes thro' a fmall brafs ring, call'd a male, or thro' a loop in the leifh, and hath a fmall long weight or lingoe hung below to counter-balance the pack-threads, which, going from the top of the rings or loops, are paffed over the pullies in the table, directly over the loom, and are continued nearly in an horizontal polition on one fide of the loom, to a convenient diftance; where they are all fpread on a crotspiece, faftened to 2 ftaples: Thefe are called the tail of the mounture; and from each of thefe packthreads, juft by the fide of the loom, are faftened other packthreads, called fimples,

190

MEMOIRS of the

which defcend to the ground: So that by pulling thefe fimple chords, you raife any of the threads of the warp at pleafure : Wherefore they faften a loop or potlart to as many of thefe fimple chords, as there are threads of the warp to be pulled up at every fhoot or every throw of the fhuttle; by which means the fhoot fhews itfelf on the right fide, where the warp is pulled up: And in ordering this they are guided by the pattern, on which they count the diftances of the fubdivifions, which contain the fame coloursin the fame line, and can be fhot at once; then they faften potlarts to the feveral fimple chords, that draw up the rings, thro' which thefe threads of the warp run, which are to lie behind this colour; they tie all thefe loops together, and faften a piece of worfted, or filk to the knot, of the fame colour with that the workman is to throw; and the boy, when he pulls each loop, names the colour, that the weaver may take the proper thuttle; and fo on for every colour to be thrown.
Tibe Sequel of the Account of the Cinnamon Tree in Ceylon; by M. Seba. Phil. Tranf. № 4r9. p. ıo6.

M.Seba having fome years before, bought out of the - Eaf India warehoufes at Amferdam, a confiderable yuantity of cinnamon leaves, or folia malabatbri, pack'd up in feveral large chefts, he happened to find in one of them the flowers of the cinnamon (as big as the Icalian beanflowers, and of a blue colour) as alfo the fruit.
In 1721, 1723, he bought of the fame company the oil which is exprefs'd out of the fruit of the cinnamon tree, as allo that which is boil'd out of it, which is of a very good confitence, and of a white colour; and by the Eaft India company calld cinnamon wax; becaufe the King of Candia caufes candles to be made out of it, which for their agreeable feent are burnt only by himfelf and at his court: However, he permits his fubjects to exprefs the juice out of another fruit, mot unlike that of the cinnamon tree; but this being only a thin fat fubftance, like oil of olives, they camor burn it any otherwife than in lamps.

The Indians likewife make ufe of this cinnamon wax in phyfic; and give it inwardly in luxations, fractures, falls, contufions and bruifes; that in cafe any inward part be mouched or bruifed, it may by its balfamic virrue be healed. They likewife give it in bloody fluxes to a drachm, or a drachm and a half: Outwardly apphed it makes the frin
more beautiful, fmooth, and foft than any one fort of pomade. The leaves of the cinnamon tree likewife yield an oil, which is of a bitterifh tafte, refembling oil of cloves, mixt with a little good oil of cirnamon. It is call'd oleum malabatbri, or oil of cinnamon leaves. It is an aromatic, and reckoned an excellent remedy in head-aches, pains of the ftomach, and other diftempers.

The oil of the root of the cinnamon tree is, properly fpeaking, an oil of camphire; the roots affording a good quantity of camphire. M. Seba bought a bottle of it of the Eaft India company, where there were feveral together in a box, upon which was written in Low Dutch, Defe oliteyten Syn tot een gefchenk uyt Candia gefchikt; that is, the fe oils weve fent as a prefent out of Candia; which fhews that they are genuine, without any adulteration.

If this oil be dittill'd in glafs veffels, there comes over along with it that fort of camphire, the Indians call campbire baros, or camphire of Borneo, which fhoots into thin tranfparent cryftals, forming a beautiful variety of trees on the recipient, not unlike thofe, which in very frofty weather are to be feen upon windows. This fort of camphire is of very great efficacy in phyfic, and gather'd and kept for the King of Candia's own ufe, who efteems it an excellent cordial: and not only the camphire of baros, but alfo the oil of camphire, which is extracted from the roots of the cinnamontree, is a very great cordial, if taken inwardly: It ftrengthens the fomach, expels wind, and hath been found of great fervice in arthritic and gouty diforders; it is alfo a diuretic: the dofe is ro or 12 drops upon a bit of fugar, or in a proper vehicle. It is outwardly applied in all arthritic pains from cold and obitructions; being rubbed on the affected part with a warm hand, it will prefently lefien the pain, and by degrees take it off.

About ${ }^{3} \sigma$ years ago M. Nicolas $D_{\text {Dumbfldorff at Amferdanz }}$ was fo cruelly aflicted with arthritic pains, that he could have no reft either night or day; and the' he had the advice of feveral noted phyficians, and tried a great many medicines, yet he could find no relief; till he was advifed to caufe anoint himiflf with the oil of cinnamon tree root. M. Seba anointed him himfelf, rubbing the oil on all the affected parts, with his hand warmed by holding it to an oven; and this he did twice every day for an hour together. And tho', when this
cure was firf begun with the patient, his hands and feet were by the convulfions and the violence of the pain, contracted in fuch a manner, that they grew quite crooked, and full of nodes; yet in a fortnight's time he became fo much better, that he could neep well of nights, feeling neither pain nor cramps. In about fix weeks time he could walk about hiss room; whereas before anointing, he was not able to ftir either hand or foot. This anointing was continued for aboutt three months, when the patient not only recover'd of that violent indilpofition, but continued free from the gout ever: after, and livid about 15 years in a very good ftate of health. And feveral other people in the faid patient's condition did the fame with equal fuccefs.

Several phyficians have written largely of the virtues of common camphire, but there are ftill many hidden qualities in this excellent medicine. Thus, for inftance, M. Seba can affirm, that in all burnings by fire or otherwife, and the pains occafioned thereby, he has not hitherto met with any better or furer medicine than the following.

Re Spir. Lumbricor. terref. cum $\int p i r$. vini rectificat. 予xii. Campbor. 予ii. M.

No fonner is a bandage, or cornprefs, dipped into this ipirit, applied to the affected part, but it will give inftant relief; and to effectually check the inflammation, that it thall fpread no farther. But the application of it muft be continued till the pain be quite gone; and the ulcus, if any, dried up, If the exulceration be got deeper, and if the wound muft be kept open, two ounces of camphire, diffolv'd in oleum byperici, mix'd with a pound of the common unguentum ceruffe, applied S. A. will quickly and effectually heal it, as M. Seba often experienced.
A Polypus, refembling a Branch of the Pulmonary Vein, cougb'd up; by Zr. Nicholls. Phil. Tranf. $N^{\circ} 419$. p. 123.

NICHOLAS Tulpius in ObS. \%. Book 2. prefents us with the cafe of. a man, who, with a large effufion of blood, threw up, by coughing, two branches of the pulmonary vein, fix inches long, with their feveral ramifications, freed from the tracbea and fubitance of the lungs, as if very

accurately diffected. This cafe he obferves to be very extraordinary, and not to be parallell'd in the writings of phyfical authors.

A fmall acquaintance with the ftructure of the lungs fufficiently evinces the impoffibility of the fact, as there ftated: Wherefore Dr. Nicholls (not doubting the author's veracity) always believ'd Tulpius was deceiv'd by a polypus of the vein, which might be cough'd up in the manner he deferibes, it.
But the following cafe will put this matter in another light. Ffuly 18, 1730, Dr. Nirbolls was confulted on behalf of one living in Effex, who was althmatic, and cough'd up phlegna, refembling worms; to remedy which the Dr. directed a lac ammoniacum, with fquills; from the ufe of which he expectorated more eafily, but till continued to cough up the fame fubtances.
Fuly 1r, 1791. on the road to London, the patient was fiezed with a thivering, and pleuretic pains; his tongue white, pulfe hard and quick, EBC. By repeated bleeding his pains decreafed, but the cough continued, and that more violent than ufual. Upon examining the expectorated phlegm (which was tinged with blood) the Dr. found it fibrous, and (when expanded in water) exactly refembling the veffels in the lungs. Thefe fubftances are as tough as the coats of the veins, and like them hollow. The patient cough'd up more or lefs of them every day for feven years; fometimes perfectly white, and fometimes tinged with blood: NotwithItanding which, he has had no orher complaint, has had a good appetite and colour, and a greater thare of fat than any man would choofe. The fpecimen (reprefented Fig. Io Plate ViI.) was expectorated when the Dr. was prefent,
 draught; and is no more than a vifcid phlegm, fecreted by the relaxed glands of the trackea, and afterwards concreted by the heat of the part.

An Experiment, explaining a mechanical Paradox; namel. that two Bodies of equal Weigbt, fufpended on a certai fort of Balance, do not lofe their Equilibrium, by bein remov'd, the one fartber from, the other nearer to, th Centre; by ©Dr. Delaguliers. Phil. Tranf. No 41 ! p. 125.

PROP. 7, If the two weights P W (Fig. 2. Plate VIII hang at the ends of the balance A B, whofe centre motion is C ; thofe weights will act againft each other (becaut their directions are contrary) with forces, made up of th quantity of matter in each, multiplied by its velocity; tha is, by the velocity which the motion of the balance turnim about C will communicate to the body fufpended. Now th velocity of a heavy body is its perpendicular afcent or defcern as will appear by moving the balance into the pofition a l which thews the velocity of P to be the perpendicular lint $e a$; and the velocity of B will be the perpendicular line $b \varepsilon$ For, if the weights P and W be equal, and likewife the lin $e a$ and $b g$, their momenta made up of $e a$, multiplied im? W , and of $b \mathrm{~g}$, multiplied into P , will be equal, as wi appear by their deftroying each other in making an equii brium. But if the body w were remov'd to M , and fufpende at the point D; then its velocity being only $f d$, it would 1 over balaniced by the body P ; becaufe $f d$, multiplied im M , would produce a lefs momentum than P , multiplied im bg.

As the arches $A a, B b$, and $D d$, defrribed by the endss the balance, or points of fufpenfion, are proportionable their fines $e a, g b$, and $d f$; as alfo the radii or diftance CA, CB, and CI ; in the cafe of this common fort balance, the arches defcrib'd by the weights or their poirt of furpenfion, or the diftances from the centre, may be tak for velocities of the weights hanging at A, B, or D; an therefore the acting force of the weights will be reciprocal as their diftances from the centre.

Scholium. The diftances from the centre are taken hee for the velocities of the bodies, only becaufe they are propos tionable to the lines $e a, b g$, and $f d$, which are the trr velocities; For, there are a great many cafcs wherein th velccities are neither proportionable to the diftances froni th centre of motion of a machine, nor to the arches defcrib'd the weights, or their points of fufpenfion : Therefore, it:
not a general rule, that weights aft in proportion to their diftances from the centre of motion; but a corollary of the general rule, namely, that weights act in proportion to their true velocities, which is only true in fome cafes. Therefore, we muft not take this cafe as a principle, which moft workmen do, and all fuch as make attempts to find the perpetual motion, as Dr. Defagaliers has more amply fhewn in Phil. Tranf. $\mathrm{N}^{\circ} \cdot{ }_{3} 69$.

But to make this evident even in the balance, we need only take notice of the following experiment. A CBEKD (Fig. 3.) reprefents a balance in the form of a parallelogram paffing thro' a flit in the upright piece NO, ftanding on the pedeftal M ; fo as to be moveable upon the centre pins C and K : To the upright pieces AD and BE of this balance are fixed at right angles the horizontal pieces FG and HI. That the equal weights P W muft keep each other in equilibrio is evident; but it does not at firt appear fo plainly, that if W be remov'd to V , being fufpended at σ, yet it thall ftill keep P in equilibrio, tho' the experiment hew it : Nay, if W be fuccefively moved to any of the points $I, 2,3, E$, 4,5 , or 6 , the cquilibrium will be continued; or if P (W) hanging at any of thofe points) be fucceffively moved to D , or any of the points of fufpenfion on the crofs-piece FG, it will at any of thofe places make an cequitiorium with W. Now when the weights are at P and V, if the leaft weight (that is capable of overcoming the friction at the points of fufpenfion C and K) be added to V . as u; the weight V will overbalance, and that as much at V, as if it were at W.

From what has been faid above, the reafon of this experiment will be very plain: As the lines A C and K D, C B and KE , always continue of the fame length in any pofition of the machine; the pieces AD and BE will always continue parailel to each other, and perpendicular to the horizon: However the whole machine turns upon the points C and K , as appears by bringing the balance to any. other pofition, as abed: And therefore as the weights, applied to any part of the pieces FG and HI, can only bring down the pieces $A D$ and $B E$ perpendicularly, in the fame manner as if they were applied to the hooks D and E, or to X and Y, the centres of gravity of $A D$ and $B E$; the force of the weights (if their quantity of matter be equal) will be equal; becaufe their velocities will be their perpendicular afeen ar defcent,

196

which will always be as the equal lines $4 i$ and $4 L$, whate ver: part of the pieces FG and HI the weights are appli ed to: But if to the weight at V be added the little weight u, thofes two weights will overbalance; becaufe in this cafe the momentunn is made up of the fum of V and u, multiplied by the common velocity 4 L .

Hence it follows, that it is not the diftance $c \sigma$, multiplied into the weight V , that makes its momentum; but its perpendicular velocity L_{4} multiplied into its mafs. ©. E. D.

This is ftill farther evident, by taking out the pin at K :: For, then the weight P will over balance the other weight: at V; becaufe then their perpendicular afcent and defcente will not be equal.
A Domiting of Blood cured by drinking very cold Liquors in Winter: by Dr. Michelotti. Phil. Trani. N ${ }^{0} 419$. p. 129. Tranflated from the Latin.

LUdovicus Maifetti after violent exercife by hunting and riding, would of a morning vomit up five or fix ouncess of blood; for which Dr. Michelotti ufed the following method of cure. As he perceiv'd the blood highly rarified, and its impetus upon the veins and arteries very conficerable, which was greatly increas'd by a plethora; and as he was well aware, that the patient labour'd under a fcirrhous fpleen, on account of which he had for four years before vomited blood, and from his childhood been, every fipring and autumn, fubject to plentiful hemorrhages at the nofe, which (after an accidental blow on the head at foot-ball) almoit entirely ceafed : Upon all thefe accounts the Dr. ordered to apply leeches immediately to the hemorrhoidal veffels, and drain off eight ounces of blood, both to dimimifh its quantity, and divert it from the fpleen and ftomach; and at feveral times that day, about a pint of plantain water, well faturated with nitre and coral, in order to allay the rarefaction of the blood. But about midnight his vomiting ftrongly recurring, he was inftanly ordered four ounces of lettice water, mix'd up with is drops of Helmont's Laudanum with quinces, to diminifh the velocity of the blood, and procure neep; which when the parient had thrown up, with a plentiful difcharge of blood at three or four times, recourfe was had to pills made of fix fruples of Pbilonium perficum, to be taken down with blood-wort water. At the fame time he ordered the patient to hold in his mouth cold water, mixt with cold
vinegar, and to apply a fponge, well foaked in cold vinegar, to the epigaftric region, in order to conftringe the bloodveffels of the fomach, whether opened by erofion, rupture or any other way; for which purpofe, as the vomiting returned a fifth, and a fixth time, and the patient feem'd to be quite fpent, recourfe was had not only to a confection of the bruis'd feeds of white poppies and henbane with Saccharum rofacum, bol. armen. and lap. bematit. to be taken in about a drachm at a time, but likewife to Helvetius's confolidating pills, three fcruples of which were taken every four hours in the water juft mentioned, in which a fmall quantity of the powder of pearls and red coral calcined, as alfo of the magiftery of crabs-eyes was diffolv'd. By thefe means the vomiting ceas'd for fome hours.

The Dr. forbore opening a vein that night; and that, becaufe he found the patient had vomited upwards of 12 pounds of blood in about two hours time, and that he lay in a cool room, and with few bed-cloaths on; as alfo becaufe the contraction of the heart and arteries, and confequently, the velocity of the fmall remaining quantity of blood would be very confiderable; and again that the letting of a fmall quantity of blood either in a part nearer to, or at a greater diftance from the ftomach would not be fufficient to divert iss courfe; and in the next place, becaufe he faw that by opening a vein in fuch circumftances, the proportion of the fulphureous particles of the mafs of blood might be encreafed, being remarkably fo already, as the Dr. conjectured by the patient's great thirft, heat of his body, toffing of his arms and legs, and the remarkable frequency of his pulfe, which, together with an encreafed velocity of the blood, might again bring on the vomiting.

Next morning about day-break; the vomiring was confiderable; for which the patient drank four ounces of cold nettle water mixt with eight grains of toafted opium; which not entirely fucceeding, be at length concluded to compreis the blood veffels reaching into the cavity of the fomach by condenfing its air, and to repel their blood by means of cold potions; but becaufe the patient was fo much exhaufted, and his ftomach fo exceedingly weaken'd, that he threw up the lighteft food, as panada, yolks of eggs diffolv'd in chicken broth, prifans or rice-milk, he was ordered light and ftrengthening fippings; as of chioccolatte, cows milk and fugar, çemor of fweet almonds, and white poppy-feeds, newly exprefs'd

198 MEMOIRS of the

prefs'd with fugar: About feven ounces of thefe liquors, congeal'd with ice and nitre, were every five or fix hours given the patient; fometimes one fort, and fometimes another; with a few draughts of the cold Nucerine water, and this method contributing greatly, and in a furprifing manner, to the cure, he perifited in it almoft to the beginning of the enfuing February; at which time he ordered for the firft days rice boiled in cock broth, or wheaten bread well foaked in the fame broth, or in a frefh egg; and the following days meat, as fometimes fowl, veal, and fmall birds: And befides to ftrengthen the patient's weak ftomach, about 60 drops of the tincture of wormwood, extracted without fpirit of wine, were to be taken every day before dinner in a fpoonful of pimpernel water.

On the third or fourth day of the patient's illnefs, the Dr. ordered clyfters of cow's milk, mixt up with butter, the yolk of an egg, and brown fugar, in order to bring away that black footy blood flowing from the flomach to the lower parts; and on that account he judged it better to abftain from fuch medicines, commonly prefcrib'd by other phyficians in vomitings of blood, as either hinder or remove its concretion, effects entirely oppofite to thofe of cold liquors, by which a cure was already fo fuccefffully begun.

- And by this method of cure, the patient, brought to the loweft pals, was freed from a very dangerous diforder, as we have feen above. And to prevent any furure relapfe, the Dr. ordered every three or four months to take away feven or eight cunces of blood, for the moft part from the arms, and and fometimes from the hemorrhoidal veffels. The reafon of this precaution was, that the fileen being feirrhous, as abovementioned, its blood-veffels could not poffibly contain their natural quantity of blood, and therefore the other veffels of the body, and more fo, thole of the fomach, which lies fo near the fpleen, muft neceffarily contain more than their natural quantity; and on that account be fo dilated, as to give paffage to the blood that continually endeavours to efcape from them; as is commonly the cafe in fpitting or vomiting of blood, or in hemorrhages at the nofe from great obftructions in the veffels of the lower belly; as we have inftances in Riolanus; who from Hippocrates and Valverda gives hiftories of fuch as died by vomiting blood, from a turgid fpleen : Theeefore, by way of prevention, he judged it proper to ufe repeated bleeding; and becaufe the impertus of the blood upon the veffels may be encreafed water inftead of wine, and to abftain from hunting, running, and other violent exercifes, that might accelerate the motion of the blood; and this method was attended with good fuccefs till December 1730: On the 2d of \mathcal{D} ecember, in the night he had a relapfe; but fince he vomited only a pound, or two, and the Dr. obferved a fullnefs of good blood; tho' the vomiting continued, and the arteries were almoft entirely flaccid, yet he was immediately order'd blooding in the left arm, to the quantity of 10 ounces, in order to divert its courfe from the blood-veffels of the ftomach; and after that, 15 or 18 drops of Helmont's liquid laudanum in 4 ounces of the water of the leffer pimpernel, both to procure fleep and retard the velocity of the blood; and he was obliged to repeat the dofe 3 or 4 times that evening; becaufe the patient had thrown it up upon the return of the vomiting.

By thefe means the vomiting had fcarce intermitted for 2 hours; but upon its returning once and again, the Dr. likewife order'd to draw about 4 ounces from the hemorrhoidal veffels; and at the fame time he had recourfe to cold liquors, which at other times he had found fucceffful, and which at that very time fucceeded fo weil with a young woman, who was almoft exhaufted by profufe vomiting of blood from obftructions in the veffels of the uterus; and firt he had recourfe to Clsioccolatte, and about 4 hours after to other congealed liguors, fuch as forbetti di jpumiglia § pappina, as they are called. By this method of cure, by which the motion of the blood, efpecially in the gaftric arteries and veins, might be check'd, the vomiting ceas'd till next day; when returning twice, it was ag g_{i} in ftopped by repeating the faid culd liquors, every third or fourth hour.

On the 3^{d} day of the diforder, the Dr. upon the patient's vomiting again in a fmall quantity about evening, prefcribed gilded pills SPbilon, per $/ i c$. 30 gr. toft. opij $\Theta /$ s. in 3 ounces of tormentil water, in order to procure fleep, and lay the preternatural commotions of the heart and arteries; which aniwer'd to well, that the vomiting inmediately ceafed, and the patient flept pretty well in the night. While thefe things were taken in by the mouth; clyfters, made of milk, butter, fugar and yolks of eggs, mixt up together, were thrown up by the anus, on the ad and ${ }_{3}$ d day, to bring away the black blood, that had now fallen down from the fromach into the guts, under the appearance of black bile: Befides, he was ordered to drink often
and in fmall quantities, for fear of cloying the fumach, milfoil water, wheren a guince had boiled a little, and which was cooled with ice; to brace up the ftomach and ftrengthen its blood-veffels, and affwage the patient's thirft, which began to urge the third day.

For 12 days together this cold and thin diet was fuccefffully ufed, and under it the patient broke wind plentifully downwards; after which time, complaining very much of a diftending pain in his ftomach (becaufe he had drank to excefs of the faid water, cool'd with ice, in order to allay his thirft) the Dr. forbore the ufe of it, and fubfituted a fomewhat fuller diet; as warm chicken-broth, in which the yoik of a frefh egg was difcolved with fome lemon juice. Thefe broths were taken twice a day, with fome hot Cbioccolatte early in the morning, but firft a draught of cold water, broth to cool the ftomach, and allay the patient's immoderate thirft, was drank. Againft the troublefome diftenfion of the flomach, befides the hot liquors, the pills juf mentioned were given, for compofing the immoderate commotions of the nerves and animal fipirits.

On the $14^{\text {ih }}$ day, after a flight head-ach on the days immediately preceeding, there fuddenly arofe a pain and tumour Spreading wide behind the left ear about the middle of the lower mandible, and at the fame time a continent but light fever, with a fhuddering, is intended, with fome degree of a deliriup. For this pain the Dr. prefcribed warm and muift fomentations, to be applied with fponges, and made of equal parts of cow's milk and fimple water, in which alder flowers were boiled; and by this, the matter of the tumour was almolt entirely difcus'd in 8 days; after which time, the fever, intending a little abouz night, and remitting in the morning, fill continued; the patient was not now to thirity; drank the cold Nucerine waters; was awake in the day time, and nept in the night; was reffelh'd by the warm liquors abovementioned; and lometimes he made ufe of a rice-ptifan. He was naturally and even in health troubled with belchings; and fometimes he complained of acids (as he faid) which irritated his ftomach, fo that he threw up phlegm, and fometimes his aliments; for which the Dr. gave once a day about noon (not without fliccefis) the tincrure of wormwood, and frequently the cold Nucerine waters; and fometimes the philonium perficums and toafted opium, and fometimes cold potions of mill and fugar, congeal'd by art for his belching; and he ordered warm fomentarions to allay the cummotions in his flomach.

A bout the 40th day the patient difcharged by the mouth a watery humour; his arteries were in a natural ftate; his ftools were daily in fufficient quantity; and he made water plentifully ; and his ftrength and appetite increas'd in fuch manner, that the Dr. was obliged to give thrice a day, fome ftronger food, as cold jellies of hart's-horn and calves feet, and that a little before he took the above-mentioned nourifhing broths.

From fuch kind of food he firft made a tranfition to rice, boiled in capon broth, and to boiled pullets livers; and afterwards to tender fowl, veal and quails; and in order to keep an open belly he took about a fpoonful or two of cows milk, the white of a frefh egg, mixt up with a very little fugar : And now he is well and in perfect health.

It is no difficult matter to demonftrate that this method of cure, by the above-mentioned congealed liquers, is founded on very folid reafons. For, firlt the blood-vefels of the ftomach, pouring their contents into its cavity, either by the rupture, erofion or thinnefs of their coats, or by the opening of their orifices, and being immediately in contact with, and pincht by thofe congealed liquors, are initantaneoully and ftrongly corrugated; and then the blood contained in thefe veffels is forcibly infpiffated, and repelled into the larger canals; and the body fhuddering all over by the exceffive cold, the reft of the blood is greatly retarded in its motion; and confequently, that impetus, by which the extremities of the veins and arteries might be opened, and which ariles from the velocity of the pulfe of the heart and arteries, is confiderably diminifhed; and again, thefe exceeding cold lignors, made up of nutritive molecule, and flowing into the bluod, and collected there, do without any impetus recruit the remaining mats.
Bartholin in his litrle treatife de ufu nivis medico, not only quotes Abenfina, but likewife Galen, as preferibing liquors, cooled with finow, for hot diforders of the ftomach: And probably, the latter, according to Rartbolin, follows Seneca in his Nat. Qufegt. and propoles to cure the diforders of the ftomach, with warer, food and fruit, cooled with fnow, Met. ©Led. lib. 7. cap. 4.
Befides Abenfina and Galen, the fame Rartbolin likewife quotes Rbajes, Zacutus, and Amatus, both sportuguefe, Lud. Septalius, Laz. Riverius, and others, who, to cool the exceffive heat of the ftumach, and cure colics, arifing from hot and bilious humours, prefcribed ford and drink, cooled with ice, and applied to the belly linnencloths dipt in cold water. But he ruentions no one, who had ever cur'd vomiting or fluxes of

Vol. 1X. No 6
C
bloud
hlood in any part of the body, by potions cool'd with fnow of ice, or any other kind of cold liquors.

That liquors cool'd with an emulfion of melon feeds and a little fugar, when given fparingly abour the evening, have pretty good effects, the Dr. experienced in very cold weather, in a young nun of a hot conftitution, grievoully affected with a fpaf . mus of the ftomach, from exceffive grief, which conftringed its left orifice in fuch manner, that fhe refpired with difficulty, and the deficent buth of her food and drink, tho' in fmall quantities, was almoft entirely precluded.
Tho' Hippocrates, Sect. 5. Aphor 24. writes frigida, veluti nivem \& glaciem, Sanguinis eruptiones inducere: Yet Aphor. 23. he afferts, in bis'frigidà uti oportere, unde fanguis eruptus, aut erupturus eft, \mathcal{E} quidem circa ipfas partes, unde fluit. About σ years before, after a fruitlefs ule of the common medicines, and even very cold water, Dr. Michelotti, in the middle: of fummer, very readily fuppreffed a large flux of blood from the uterus, by laying ice upon the knees and thighs; whereby the crural, and confequently, the iliac, and other arteries and veins, terminating in the uterus, were conftringed, the blood fors that reafon reprefs'd, and precluded, as it were, its ufual courfe.

Tho' the Dr. very much approve of cold liquors in all fluxess of blood, efpecially from the ftomach, and which are owing to an effervefcence and accelerated motion of the blood, or accom.panied with thern, and efpecially in young people, whofe blood and ftomach are in a ferment : Yet he would not prefcribe thefe? congealed liquors indifcriminately to women, that vomit blood after child-birth, or that are fubject to cold fermentations of the ftomach, or inteflines: In this cafe, as he would neither fo rea-dily ufe a deal of warm water; nor fuch as is lukewarm, asa Hippocrates indifcriminately prefribes both in his treatife def Morb. Muliebr. and in that de Nat. Muliebr. So neither would he condemn affes or cows milk, which the fame Hippocrates pre-fcribes in thefe cafes. In blood-vomiting from a fuppreflion ort diminution of the locbia, he would pretcribe in the firft place: to open a vein in the feet in order to divert the blood from thee ftomach; and warm fomentations of water and white wine, im which emollient and aperient herbs were boiled, on the hypoga-flric region; and at the fame time to wafh the legs and feet in a large quantity of warm water, that the veffels of the uteruss might be opened; and then he would have recourfe to milk, in order to moiften and recruit the mafs of blood. But thould as woman at the fame time romit blood and have her Locbia, thee

Dr. would, by carefully attending to every particular circumftance, endeavour to fupprefs the vomiting, not with warm fomentations and lotions, but with remedies that allay the impetus of the blood, that infpiffate it and moderate its heat; and that ftrengthen the veffels of the ftomach : And when the vomiting was fuppreffed, he would have recourfe to a milk-diet; or if that fhould prove ineffectual, to ftrengthning draughts of cbioccolatte, and nourifhing broths, made of chickens, frogs, fnails, © ${ }^{\circ}$ c.
The Defcription of an Inftrument for taking Angles, by reflections, invented by Mr. Hadley. Phil. Tranf. $\mathrm{N}^{\circ} 420$. p. 147.

TH IS inftrument is defign'd to be of ufe, where the motion of the objects, or any circumftance, occafioning an unfteadinefs in the common inftruments, renders the obfervations difficult or uncertain.

The contrivance of it is founded on this obvious principle in catoptrics; namely that if the rays diverging from, or converging to any point, be reflected by a plane polifh'd furface, they will, after the reflection, diverge from, or converge to another point on the oppofite fide of that furface, at the fame diltance from it as the firft; and that a line perpendicular to the furface, paffing thro' one of thofe points, will pafs thro' both. Hence it follows, that if the rays of light, emitted from any point of an object, be fucceffively reflected from 2 fuch polifh'd furfaces; that then a third plane, perpendicular to them both, paffing thro' the emitting point, will alfo pafs thro' each of its 2 fucceffive images, made by the reflections : All the 3 points will be at equal diftances from the common interfection of the 3 planes; and if 2 lines be drawn thro' that common interfection; one from the original point in the object, the other from that image of it which is made by the fecond reflection, they will form an angle double to that of the inclination of the two polifh'd furfaces.

Let RFH and RGI (Fig. 4. Plate VII.) reprefent the fections of the plane of the figure by the polifh'd furfaces of the $2 \int$ pecula B C and D E, erected perpendicularly thereon, meeting in R, which will be the point where their common fection, perpendicular likewife to the fame plane, paffes it, and HRI is the angle of their inclination. Let AF be a ray of light from any point of an object A falling on the point F of the firft Speculum BC, and thence reflected into the line FG; and at the point G of the fecond Speculum DE refected again into the 2 fucceffive reprefentations of the point A; and draw $R A$, R M, and R N.

Since the point A is in the plane of the fcheme, the point M will be fo too by the known laws of catoptrics. The line FM is equal to FA, and the angle MFA double the angle HFA, or MFH; confequently RM is equal to RA , and the angle MRA double the angle HRA, or MRH. In the fame manner the point N is alfo in the plane of the fcheme, the line R N equal to RM , and the angle MRN double the angle MRI or IRN: Subftract the angle MRA from the angle MRN, and the angle ARN remains equal to double the difference of the angles MRI and MRH, or double the angle MRI, by which the furface of the fpeculum DE is reclinedl from that of $B C$; and the lines $R A, R M$ and $R N$ are equal.

Corollary r . The image N will continue in the fame point ; tho' the 2 Specula be turned together circularly on the axis R, fo long as the point A remains elevated on the furface of $B C$; provided they retain the fame inclination.

Cor. 2. If the eye be placed at L (the point where the line AF continued cuts the line $G K$) the points A and N will ap. pear to it at the angular diftance $A L N$, which will be equall to $A R N$: Eor, the angle $A L N$ is the difference of the angless FGN and GFL, and FGN is double FGI; and GFL double GFR; and confequently their difference double FR G or HRI: Therefore, L is in the circumerence of a circle, paffing thro A, N and R.

Cor. 3. If the diftance $A R$ be infinite, there points A and N : will appear at the fame angular diftance, in whatever points off the fcheme the eye and Specula are placed: Provided the inclipation of their furfaces remain unalter'd, and their common fection parallel to itfelf.

Cor. 4. All the parts of any objects will appear to an eyes viewing them by the 2 fucceffive reflections, as before defribed, in the fame fituation as if they had been turned together circularly round the axis R, keeping their refpective diftances from one another and the axis, with the direction HI, i.e. the fame: way the fecond fpeculums DE reclines from the firft $B C$.
Cor. 5. If the Specula be fuppos'd to be at the centre of an infinite fphere ; objects in the circumference of a great circle, to which their common fection is perpendicular, will appear remov'd by the 2 reflections, thro' an arch of that circle, equal to?
twice the inclination of the Specula, as is faid before: But objects at a diftance from that circle will appear'remov'd thro' the fimilar arch of a parallel: Therefore, the change of their apparent place will be meafur'd by an arch of a great circle, whofe chord is to the chord of the arch, equal to double the inclination of the $\int p e c u l a$, as the co-fines of their refpective diftances from that circle are to the radius: And if thofe diftances be very fmall, the difference between the apparent tranlation of any one of thefe objects, and the tranlation of thofe which are in the circumference of the great circle aforefaid, will be to an arch, equal to the verfed sine of the diftance of this object from that circle, nearly, as double the fine of the angle of inclination of the fpecula, is to the fine complement of the fame.
$A B C$ (Fig. 5.) reprefents the inftrument, which confifts of an octanr, having on its $\operatorname{limb} \mathrm{BC}$ an arch of 45 degrees, divided into 90 parts or half degrees; each of which anfwers to a whole degree in the obfervation: It has an index ML moveable round the centre, to mark the divifions; and upon this near the centre is fixed a plane Jpeculum EF perpendicular to the plane of the inftrument, and forming fuch an angle with a line drawn along the middile of the index, as thall be moft convenient for the particular ufes the inftrument is defign'd for (for an inftrument, made according to that reprefented in the figure, the angle LMF may be of about $\sigma 5$ degrees) 1 K G H is another fimaller plane fpeculum, fixed on fuch part of the oetant, as will likewife be determined by its particular ufe, and having its furface in fuch direciion, that when the index is brought to mark the beginning of the divifions (i. e. o degrees) it may be exactly parallel to that of the other; this fpeculum being turned towards the obferver, and the other from him. PR is a telefcope fixed on one fide of the octant, having its axis parallel to that fide, and palfing near the middle of one of the edges $I K$ or $I H$ of the fpeculum IKGH: So that half its object glafs may receive the rays reflected from that fpeculum, and the other half remain clear to receive them from a diftant object. The two Specula muft likewife be difpos'd in fuch manner, that a ray of light coming from a point near the middle of the firt Speculum, may fall on the middle of the fecond in an angle of 7 , degrees, or thereabouts; and be thence refeqed into a line parallel to the axis of the telefcope; and that a clear paffage be left for the rays coming foom the objeat to

206

MEMOIRS of the

the fpeculum EF, by the fide HG. S T is a dark glafs, fixt in a frame, which turns on the pin V, by which means it may be placed before the fpeculum EF, when the light of one of the objects is too ftrong: Of thefe there may be feveral.

In the diftinct bafe of the telefcope, reprefented (Fig. 6.) by the circle $a<c d e f$, are placed three hairs; two of which $a c$ and $b d$ are at equal diftances from, and parallel to the line $g b$, which paffes thro' the axis, and is parallel to the plane of the oftant; the third hair $f c$ is perpendicular to $g b$ paffing thro' the axis.

The inftrument, as thus defcribed, will ferve to take any angle not greater than 90 degrees: But if it be defigned for angles from 90 to 180 degrees, the polifh'd furface of the fpeculum EF (in Fig. 5.) muft be turned towards the obferver; the fecond IKGH muft be brought forward to the pofition NO; fo as to receive on its middle the rays of light from the middle of the firft peculum in an angle of about 25 degrees, their furfaces being perpendicular to one another, when the index is brought to the end of the divided arch next C : and this fecond Speculum muft ftand five or fix inches wide of the firf; that the obferver's head may not intercept the rays in their paffage towards it, when the angle to be obferv'd is near 180° : The fmaller Speculum is fixt per ${ }_{5}$ endicularly on a round brafs plate, tooth'd on the edge; and may be adjufted by an endlefs fcrew.

In order to make an obfervation, the axis of the telefcope is to be directed towards one of the objects, the plane of the inftrument paffing as near as poffible thro' the other, which muft lie to that hand of the obferver, as the particular form of the inftrument may require, viz. the fame way that the Speculum EF does from IK G H, if it be made according to this figure and defcription. The obferver's eye being applied to the telefcope, fo as to keep fight of the firft object; the index muft be mov'd backward and forward, till the fecond object be likewife brought to appear thro' the telefcope, about the fame diftarce from the hair of (Fig. 6.) as the firft : If then the objects appear wide of one another, as at i and k; the inftrument muft be turned a little on the axis of the telefcope, till they come even, or very nearly fo; and the index muft be remov'd till they unite in one, or appear clofe to one another, in a line parallel to $c f$; both of them being kept as near the line $g b$ as poffible. If the inftrument be then turned a little on any axis perpendicular to its plane, the two images will move along a line, parallel to $g h$, but
eep the fame pofition in refpect of each other: So that in whatever part of that line they be obferv'd, the accuracy of the obfervation will be no otherwife affected than by the undifinctnefs of the objects. If the 2 objects be not in the plane of he inffrument, but equally elevated on, or deprefs'd below it, they will appear together at a diftance from the line $g h$, when the index marks an angle fomething greater than their neareft diftance in a great circle: And the error of the obfervation will increafe nearly in proportion to the fquare of their diftance from that line, but may be corrected by help of the sth Corol. Suppofe the hairs $a \in$ and $b d$, each at a diftance from the line $g b$, equal to $4^{\frac{1}{4}+\frac{0}{6}}$ of the focal length of the object-glafs; fo as to comprehend between them the image of an object, whofe breadth to the naked eye is a little more than $2^{\circ} \frac{3}{4}$; and let the images of the objects appear united at either of thofe hairs: Then as the fine complement of half the degrees and minures, mark'd by the index : is to the doubled fine of the fame:: So is one minute : to the error which is always to be fubitracted from the obfervation. Other hairs may likewife be placed in the area $a b c d e f$, parallel to $g h$, and at diftances from it proportional to the fquare roots of the numbers $\mathrm{I}, 2,3,4, \mathcal{E}_{\mathrm{c}}$. And then the errors to be fubftracted from the fame obfervation, made at each of thofe hairs refpectively, will be in proportion to the numbers $1,2,3,4, E \xi$. This correction will always be exact enough, if the obferver take care (efpecially, when the angle comes near 180°) to keep the plane of the inftrument from varying too much from the great circle paffing thro' the objects.

In regard to the workmanhip, if an exacinefs be required in the obfervations, the arch ought to be divided with the greateft care; becaufe all errors committed in the divifion are doubled by the reflections: The index mult have a fteady motion on the center; fo that its axis remain always perpendicular to the plane of the ofant: For, if that alter, it will be liable to vary the inclination of the Jpeculum it carries to the other: The motion muft likewife be eafy, left the index be fubjeet to bend edgeways: For the fame reafon it fhould be as broad at that end next the centre as conveniently can be: The Specula fhould have their furfaces of a true flat; becaufe a curvature in either of them, befides rendering the object indiftinct, will vary its pofition, when feen by reflection from different parts of them: They muit alio be of a fufficient lengit and breadth for the telefcope to take in a convenient angle without lofing the ufe of any past of the aperture of its object glafs, and that in all the differens
pofitions of the index. They may be either of metal or glafs plates foild, having their two furfaces as nearly parallel as puffible; yet a fmall deviation may be allow'd; provided ether the thickeft or thinneft (and confequently, the common fection of their furfaces) be parallel to the plane of the otant: For, in that cafe, tho' there be feveral reprefentations of the object, they will be always very near one another, in a line parallel to $c f$; and any of them may be ufed, except when the angle to be obrerv'd is very fmall. The chief inconvenience will be, that a fmall ftar will be more difficultly difcerned, the light being divided among the feveral images. The telefcope may be contriv'd to alter its fituation; to as to receive the reflected rays on a greater orlefs part of its object glafs, if the objects differ in brightnefs. The recond Speculum may have a part unfoil'd, that if either of them be fufficiently luminous, the lefs bright may be feen thro' it by the whole aperture. If the fun be one of the objects, or the moon be compared with a fimaller fixt ftar; their refleGed images muft be ftill farther weakened, by the interpofition of one or more of the dark glaffes ST. An exact pofition of the telefcope is not neceffary; and the inftrument may be us'd without one, the difpofition of the fpecula, with regard to the fector and index, being fuch as may allow the eye to be brought as near the fecond fpeculum as may be, and make the inftrument the moft commodious for the obferver. No greater degree of fteadinefs is requifite in a pedeftal, or machine which carries this inftrument, than what is fufficient for the telefcope us'd with it: For, tho' the vibrating motion of the inftrument may alfo occafion the images of the objects to vibrate crofs one another; their apparent relative motion will be very nearly in lines parallel to $c f$; and it will not be dificult to diftinguifh whether they coincide in croffing one another, or pais at a diftance: And if the objects are near one another, and the telefcope magnify but about four or five times, it inay be held in the hand without any ftanding fupport. In this manner the alcitude of the fun, moon, or fome of the brighter flars from the vifible horizon, may be taken at fea, when it is not too rough.
Fig. 7. Thews an inftrument defigned for this purpofe; differing from the foregoing defcription chiefly in placing the fpecula and relefcope, with regard to the fector and index; it has alfo a third \int peculum NO difpos'd according to the directions when the angle is greater than 90°, whofe ufe is to obferve the fun's altitude by aneans of the oppofite part of
the horizon. In placing thefe two fmaller $\int p e c u{ }^{3}$ a, it will te farther neceffary to take care that the Speculum I K G H do not ftand fo as to intercept any of the rays coming from the greater one, fixt on the index, to the third NO; nor either of them hinder the index from coming home to the end of the divided arch. WQ is a direction for the fight, which is neceflary when the telefope is not made ufe of. This confifts of a long narrow piece, which flides on another fixt on the back of the oftant, and carries at each end a fight erected perpendicularly on it : It may be remor'd at pleafure, and exchanged for the telefcope, which nides on in the fame manner, both ferving indifferently with either of the two fimaller jpecula. The eye is to be placed clofe behind the fight at W; and the thread, ftretcht acrofs the opening of the other fight at Q, perpendicular to the inftrument, is to affifl the obferver in holding it in a vertical poffition, who is to keep this thread as near as he can parallel to the horizon, and the object near the upright one.
How far an inftrument of this kind may be of ufe at fea to take the difance of the moon's limb from the fun or a far, in order to find the thip's longitude, when the theory of that planet is perfect, Mr. Hadley leaves to rrials to determine.

The theory of the moon has already been brought to a good degree of certainty and exaenefs thro the confummate sill of one of the members of the Royal Society, namely Sir Ifaac Neveton, and there is great reafon to hope, it will in'a little time appear to be compleated by the continued a pplication of fome of that body.
Ain Account of the Stylus of the Ancients, and their different forts of Paper; by Sir John Clerk. Phil. Tranf. No 4:9. p. 15%. IR $\overrightarrow{3}$ onn Clerk takes occafion from fome antique brafs implernents found near the wall of Antoninus Yius (now calld Grabom's Dyke in Scotland) to give us this curious differtation on the fiylus (an inftrument us'd by the ancients for wriving) together with the figures of fome of them; two of which are reptefented in the fhape and form of the Roman fibula; bat he is of opinion they were defigaed for a different purpofe, for which he produced very cogent reafon,

He obferves, that before the ufe of pens the ancients perform'd their writing with an inttrument, calld a Jylus or grapbium. The matter of it was gold, filver, brafs, iron Vor. IK. 6

D d
or
or bone; the thape various, but alike in being pointed and fharp at one end, and flat and broad at the other: The firft for writing, or rather cutting their letters; the latter for defacing or rubbing out whatever wanted correction; for all which, as well as for every thing elfe he aferts, he adduces fufficient proofs from proper authors.

He informs us, that the fyli made of iron, were fometimes us'd as daggers, and quores two paffages out of Suetonius to prove it; one where Julius Cof ar is faid to have woundèd Cafjus in the arm, grapbio; the other where he tells it was cuftomary with Caligula to get his enemies murder'd, graphuis, when they came into the fenate-houfe; and confirms thefe two paffages by a third, taken from Seneca's firt book de clemintia. He fuppofes the fyylus made of bone was for the ufe of women and children, as lefs dangerous than thofe of metal; and by a quotation from Prudentius it appears, that Caffianus the martyr was kill'd by his fcholars with iron filli.
He agrees with $P_{\text {etavius, or his cditors, that the imple- }}$ ments, which gave birth to this differtation, were fyyli, and not fbule ad conneitendas vefes, as Montfaucon and other antiquaries have imagined; and he thinks, that the objection, namely that the tongues of the fyli mult have been much longer than thofe of their fuppos'd fibulce, to be of little weight, fince there mult have been fome of them longer, and tome of them fhorter, according to the different fancies of the writers:. Military men might fometimes write with the point of their daggers; and from this practice the words fylus and pugio come to be confounded: But men of bufinefs and private perfons cannot be fuppos'd to have made ufe of daggers for writing. He allo obferves (which is no finall argument for his fide of the queftion) that if Montfaucon had confulted the numerous draughts he bas publithed of the habits of the old Greeks and Romans, he would not have found one of the fe implements, either as a faftening, or can ornament upon them.
He proceeds next to a defcription of thofe fyll found in Scotlond; and thews how they, were accommodated to the bufinefs he fuppofes them delign'd fur: But as the copperplate prefixt to his differtation will give a much clearer motion of that, the reader is referr'd to it; only it is to be taken notice that the fifh figure in it is entirely different from the others, that he himfelf is in fome doubt about
racix.

about it; and owns it might have ferv'd the arifpices, in. examining the bowels of animals, and have been one of thofe inftruments call'd extifpicia: However, he thinks that if he fhould pronounce it to have been a ftylus, he fhould not have been much out of the way; fince the ancients had their theie grapbiarice, which name will agree very well with this brafs cafe, and the inftrument found within it. From the fylus, ufed to form letrers, comes that figarative expreffion, that a perfon writes fuch or fuch a fort of a ftyle, to denore his manner, as a lofty ftyle, or a low ftyle; which way of fpeaking our own and other modern nations have introduc'd into their language.

As to the leveral forts of cbarta us'd for writing, he obferves the mofl ancient were made of barks of trees, or fikins; or were fuch as are call'd pugillares. The oldeft were of the inner barks of trees, call'd liber in Latin; whence a book had the name of liber; but very little of this fort is now in being, unlefs the Egyption paper may be accounted one feecies of it.

The papyrus was call'd Bubios or Bubios by the Greeks, and thence their books were call'd $B_{6} 6 \lambda_{0}, s$ or $B_{6} 6 \lambda s a$. This fort of charta was made of a plant, that had feveral pelliceous tunicles, as Pliny informs us, which were feparated from one another by a needle; and then glued again together, to give them a ftrength and firmnefs fufficient to retain what might be written upon them. Alexandria was the place moft eminent for this manufacture. There are fome fragments of this fort ftill extant in libraries, particularly the famous manufcript of St. Nark's gofpel at Venice.

The cbarte membranacee are made of the fkins of animals, drefs'd either like our glove leather, or modern parchment. The firt fort was commonly ufed by the feres for writing the law of Mofes upon it; and from the rolling up of iheic fkins comes the word volumen. But the flkins which Varro and Pliny fay werefirt made by Eumencs King of Perganus were in more common ufe: However, Eunmenes, who, as thefe authors relate, made them in oppofition to Ptolemy, King of Egypt, that had forbid the exportation of the papyrus from his dominions, dues not feem to be the inventor of the cbartee membranacee; fince Herodotus, who liv'd long before his time, informs us, that the Ionians and other nations were wont to write upon goat and fheep fkins. Fofephus likewife tells us, that the ferws fent their laws written upon fkins in

Jetters of gold to Ptolomy ; by which it feems as if thee writing upon fkins was no new thing at that time among thee Ferws.

The ufe of the pugillares was alfo very ancient, being ment tioned by Homer, and among the Latins by Plautus. Theyy were made of all forts of wood. ivory, and fins cover'd overt with wax: They were likewife of feveral colours, as red, yellow, green, faffron, white and others. Being wax'd over; any thing was eafily writ upon them by the point of the ITylus, and as eafily rubbed our, and altered by the flat parte of it. Sometimes thefe pugillares were made of gold, filver; brafs or lead; and then there was a neceflity of an iron fiyius to wrice or cat the lerters upon them, which explains that paflage in the 19 th chap of \mathscr{F}, quis mibi det ut exarentur in Libro, fylo ferreo © \mathcal{E} plumb́i laminâ, vel celte fculpantur in flice. They confifted fomctimes of two, three, five or more pages; and thence were call'd duplices, triplices, quintuplices, and mulioplices; and by the Greeks $\Delta t \pi \tau \cup \chi^{\alpha}$,

The diptychs and triptychs, that were covered with wax, ferv'd only for common occurrences; the other forts receiv'd every thing elfe that was written upon charte or membrane ; and were fomerimes calld, by the Greeks Palimpfefte, from the rubbing out of the letters upon them.

The charte lintece and bombycince, which were made of linen or cotton, were of a much later date; and from thefe we leatned to make the paper now in ufe of linen rags, an invention probably of about 600 years ftanding.
Writing was practis'd upon al! thefe cbarte with a reed, and afterwards with a pen, except upon the pugillares. Thefe recds grew upon the banks of the Nile; the Greeks likewife uned rceds imported from Perfia for the fame purpote. Calami argentei are alfo mentioned for writing.
Their letters were formed with liquors of various colours; but chiefly black; thence call'd atramentum, and in Greek $\mu: \varepsilon \alpha, \alpha$, or μ enaryoy. It was fometimes made of the blood of the cuttle.flti; formetimes of foot. Apelles compos'd a black of bumt ivory, which was calld elephontinum. They alfo had ink from Iudia of an approv'd compofition, as 'Pliny fays.

The titles of their chapters and fections were written in red or purple : Hence the titles of the Romanlaws were call'd rubrica. Their purpura was an exceeding bright red or crimion,
crimfon, much in vogue with the Byzantine writers, and called Kıvolaghs, which was a liquor made of the murex boil'd, and its thell very finely powdered ; or as Pliny relates, of the blood of that filh. Almoft all the ancient emperors wore this colour; their names were painted in it upon their banners; and they frequently wrote with it and wore it. This colour was often the diftinetion of a Roman magiftrate: and to put on the purple was the fame thing as to affume the Magiftracy. This colour was fo much admired by the poers, that they calld every thing which was very bright and fine, purple; as Horace compliments the fwan, which is never of any colour but white,

Purpureis ales oloribus.

We find even fnow honour'd with the fame epithet; whence fome have imagined that purpureus fignified white.

The children of the emperors, and fuch as had a profpect of rifing to the throne, and their guardians, fometimes wrote with green; gold was likewife employ'd for the fame purpofe: Such as want to fee more on this fubject may have recourfe to Mabillon de re diplomatica, and Montfaucon in his Palcograptbia Greca.
Experiments concerning the poifonous 2uality of the Laurelwater; by Dr. Mortimer. Phil. Tranf. № 420. p. 163.

DK. Mortiveer took a peck of laurel-leaves, and pat them into an alembic, with three gallons of water, which he diftill'd in the common way. The fire at firt being too hot, there came over an oilynefs with the water (I) which made it appear milky, till about half a pint had run: This tafted and fimelt very frong like apricock kernels, as did the next running, (2) which was clearer. He kept the firf quart by itfelf, then he drew off another quart (3) which was not near fo ftrong in tafte or fmell, but rather refembled black cherry water: The remainder was almoft infipid. The leaves after the diftillation look'd brownih, were brittle, and tafted bitrer withour the roughneis or apricock-kernel flavour, which they have while frefh.

In the afternoon of the fame day the Dr. took a mongrel puppy, weighing two pounds and a half, about 16 days old; it had fuck'd its dam in the forenoon, but had now fafted for fix hours. He took one ounce of the third water, and gave fone

214

of it to the puppy, gradually by tea-fpoonfuls, that it might the better fwallow it. When it had taken half the quantity, he let it go ; it walked about pretty ftrongly for five minutes, when it began to foam at the mouth, and foon after vomited up fome curdled milk, and then difcharg'd the foces; after which the ficknefs feemed to go off. He then gave it three teafpoonfuls more; in ten minutes it began to flagger, and draw its hinder parts after it; it fat upon its breech, whined, and made feveral efforts to vomit; but never brought any thing up: and then again would walk about, and fit down and whine; and again feem to secover for about 15 minutes longer: Then thinking that the fecond water would difpatch it fooner, it feeming to be very uneafy, the Dr. took one ounce and a half of the fecond running: He gave it firft three tea-fpoonfuls, and fer it down, when in two minutes time it became firongly convulfed, put out the tongue, and made ftrong efforts to vomit, but to no effect; it could not fland, but lay with its hinder legs ftretch'd out: Five minutes after, he gave it three tea-fpoonfuls more, when it became more ftrongly convulfed, rolled over and over feveral times, drew its head back to its ramp, then lay on its fide and panted much: About eight minutes after, he gave it two tea-fpoonfuls more, and it had freth and ftrong convulfions, but kept lying on its fide, and thus ftretching out its four legs one after another, drawing in its flanks very quick, in 15 minutes more it died, being in all about an hour from the firlt dofe.
An hour aftér it wàs dead the Dr. opened it, and found all the contents of the abdomen in their natural fate; the fomach was diftended with wind; it appeared empty of milk, bnt full of froth, and a clear mucus of a much thicker confiftence than the liquor gaftricus naturally is; they had no fimell at all; the infide of the ftomach was not at all inflamed.
Upon opening the thorax he found the lungs a little redder than ordinary, with fome veffels on the outward membrane very turgid: Upon cutting them out a pretty deal of clear red blood iffued from them. The veins and both ventricles of the heart were turgid and full of cragulated blood, of a dark brown cnlour, which tinged his fingers of a dirty yellow, as if lome gall had been mixt with it. There was no blood in the artesies: The foramen ovale was open.
Upon opening the head, the dura mater appear'd livid, as if bruifed, its veflels and the finus falci-formis were turgid and cortical fubstance of the brain looked of an unufual Jivid colour.

Next day about 50^{\prime} clock in the afternoon he took a large maftiff dog weighing 75 pounds. We tied him to a poft as he ftood on his legs, one holding him ftrongly by the tail, he being very fierce and unmanageable: We injected per annum 3 ounces of the fecond rumning; in 5 minutes he trembled and flaggered much, would let us handle him ; he drew his hinder legs after him, tumbled on his head, panted and llabbered, but gradually recovered fo as to ftand up, tho' reeling and often finking with his hinder legs. Fifteen minútes after, we injected an ounce more, he immediately ftaggered and funk behind, and fonn after he made water plentifully. We then led him to another kennel, where he foon difcharged the feces alvine plentifully, but of a hard confiftence: They feemed moiftened with the laft injected ounce, which the Dr. imagined came away by this ftool; he therefore immediately injected another ounce, upon which the dog feemed more uneafy than before, tumbling on one fide ; and in about 10 minutes after, he fell faft afleep, breathing with difficulty; half an hour after, the Dr. rnuzed him, found him fiabbering, drowfy, finking behind and giddy: About an hour and a quarter after the firft injection, the D_{r}. found him as before; but provoking him with a ftick, he bit at it, and tho' naturally fierce, he was very quiet when he did not ftrike him; in a few minutes he reeled and fell a froaring again: About 9 oclock at night he feemed very well, only drowfy. We left him all that night without water and victuals, but thro' hunger he eat fome of the fraw he lay on, as we found afterwards upon opening his ftomach. Next morning we gave him water and bones; he drank greedily, and eat the bones, bread, and whatever was given him, feeming perfectly recovered and well all day and next night; only very thifty, and a little drowfy, but perfectly gentle.

About 9 o'clock next morning, we fattened him to a poft, and put a rope into his mouth, by which his nofe was tied faft to a rail; great care being taken that there fhould be no rope fo tight about his neck, as to hinder his fwallowing, or his breathing: The Dr. then gave him 3 ounces of the fecond running, at 3 feveral times with a horn fuch as they drench horfes with; he fwallow'd it with great difficulty, and guggled up iome again: To prevent which, the Dr thruft the hurn a good way down his throat. We then untied bim from the poft, to

216

MEMOIRS of the

fee how he could walk, but he inftantly reeled, fell down, rolled over and over, difcharged much urine, and fome hard focces, had no motion to vomit, but dribbled much, panted and fhew'd great difficulty of breathing, fnuffing up the air with his noftrils, holding his nofe up, as he fat on his breech; for, he could not then ftand on his hinder legs: He often hook his head, as if itung by fome fly: He gradually" recovered, and in about 20 minutes time could walk about very fleadily on all his legs, tho he ftill appeared weakeft behind: Wherefure imagining he might linger a long while, or perhaps recover entirely, we made him fatt again, and gave him 3 ounces more, near half of which he fpitt; and out of the 6 ounces, the Dr. does not believe above 3 or 4 enter'd the dog's ftomach: He gave one terrible loud howl, and funk down at once, before we could untie him from the poft, to fee whether he could walk or not. He never offer'd to rife again, but lay on one fide, panted, hung his tongue out, and flabber'd much, ftretch'd all 4 legs out 3 or 4 times, and was quite dead and motionlefs in abnut 5 minutes time. The Dr. did not obferve any convulfion in the mufcles of the neck and back; nor was his head and tail drawn nearer together, as in the puppy.

About $\frac{x}{2}$ an hour after, the Dr. opened him, being ftill warm. He found the bladder contracted and empty; the rectun flightly inflamed, the fimall gats not diffended with wind, but contracted and almoft ciofe. The bile was evacuated in a large quantity into the dualenum, and was very thick, refembling congeal'd honey; the gall-bladder was almoft empty; but what remain'd in it was as twick as the other; to the infide of the gall-bladder there adher'd îveral excrefeencies of the form and fize of lentils, like drops of foftifh yellow wax. The liver was exceedingly inflamed, and almof livid: The ftomach was contrafted near the pylorus, and again about 3 inches above it: We found fome pieces of bone in it, a pretty deal of ftraw, and abour 2 ounces of a fluid, which fmelt flrong of the laurel-water, but no mucus, as in the puppy: Some of the villi feemed nightly infamed, the blood-vefiels being very turgid : There was a great deal of mucus in the ofophagus, which did not feem inflamed. The lungs appear'd exceedingly contracted, and very red and inflamed. The cava and all the veins were vaftly diltended, and the blood in them coagulated, tho' the body was till warm. There was little or no blood in the aorta, only upon prefing it, a fmall quantiry of a tranfparent fuid, which the Dr, took for ferum, flow'd out of it. The blood was
ftrongly coagulated in the right auricle and ventricle of the beart, being of a very dark colour, and fill'd them quite; but the left auricle and ventricle contain'd only a fmall clot of congeal'd blood, which look'd more red and florid: The Dr. kept tome clots of the blood out of the vein, and likewife out of the left ventricle, for 24 hours, but neither of them liquified or run into ferum. The Dr. caus'd cut off the head, which he did not open till 24 hours after; a great deal of blood drain'd from it; and upon opening it, the veffels did not then appear diftended, but the dura mater look'd livid: There was no blood at all in the finus falciformis; the brain looked very well; the veffels of the plexus choroides in each ventricle were not diftended, but livid, nor were they burft; there being no extravafation in the ventricles, only a tery fmall quantity of lympha; which likewife was the cafe of the pericardium, which had not above a tea-fpoonful of water in it.

In borh thefe inflances this poifon feems to act by coagulating the blood; fo that it cannot pafs the lungs or brain: And the Dr. takes it that the puppy liv'd longer than the great dog; becat.fe in the puppy the foramen ovale was open, by which the thickened blood could pafs, and perform a few circulations more than it could have done, had it had the lungs to pafs thro'; and that in the puppy the brain was the part moft affected, as was evident from the convulfions it had: Whereas the dog was but little convulfed, but feemed to die of a difficulty of breathing; and the greateft accumulation was found at the right ventricle of the heart.

The Dr. procur'd a middling fized fpaniel and pour'd fome laurel-water down his throat: He ftruggled pretty much at firft, and whined; but when about an ounce and a half of it was down, he ceafed ftruggling; that he might not be too long a dying, as much mere was given him; be filt about one third of the whole quantity. He was then laid down on the ground, but never offered to get up, only ftretching out his lege, he expired directly. Upon Mr.Ranby's opening him in. mediately, there was about 2 ounces of the laurel-water, and fome frothy mucus found in his fromach; the veins in general were very turgid, but the blond was ftill fluid; and indeed we could dificern no alteration in any of the vifcera.
Dr. Mortimer gave 4 ounces of laurel water to Dr. Porter, who forced 3 ounces down the throat of a pretty large dog. The creature inftantly returned about 2 nunces by vomit, clear and unalter'd; in a few minutes he grew prodigioufly convuls'd,

Vor. IX. 6 E e toun
foon after became motionlefs, and to all appearance was dying. Within to mintites be vomited a fecond time, and threw upa fmall quantity of a viicid, green, and very frothy matter; from which moment he began to recover, and within half an hour was perfectly well. He was kept in the yard all night, and the next morning not the leaft diforder being to be perceived in him, he was turnedi out of doors.

About half an hour after σ in the evening Dr. Mortimer gave about half an ounce of the laurel-water to a middle fized fpanicl, weighing near 16 pounds, which he fwallowed with great reluctance. He continued about a minute and a half upon his legs; he then began to reel, and in about 3 minutes more fell into moft violent convulfions, and his neck and tail were ftrongly drawn toward each other; he neither vomited nor purged, but we expested he would expire every minute, the convulfions being fo exceedingly ftrong, when fome of the company called for dome milk, in order to try whether it would prove an antidote to fo defperate a poifon. We poured a little milk into his throat, which at firft he could not fwallow, but guggled it up again, as if almoft ftrangled with it. After feveral rrials he began to fwallow fome, about a fpoonful at a rime, and feemed a little reliev'd, his convulfions leaving him, only he fetch'd his breath very hard; but he lay ftill and fnorted, as if in a profound fleep; and the milk frothed out at hiss nole: Upon rovizing him, he opened his eyes, and fwallowed the milk better, which feemed to revive him much; fo that the company imagining he would entirely recover, went away. The Dr. ftaid fome time longer, till at laft the dog began to lap the milk himfelf, when held up to it: He vomited up a pretty deal of milk, which relieved him more; and then he lapped again, but conld not ftand on his legs. The Dr. left him in this condition about 7 o'clock, thinking he would have recovered, and left orders that he thould have a pan of milk, and another of water, about a pint of each, fet by him, and that he thould be kept fhut up all night: About I I o'clock he was feen walking about; but next morning he was found dead after having drank up all the milk and water, and having vo. mised and purged pretty much. by F. F. Koegler and Pereyra. Phil. Tranf. ${ }^{\circ} 420$ p. 179. Tranlated from the Latin.
A The very beginning of the eclipfe the rains (contrary to expectation) began to cease and at the fame time the clouds to grow rarer; and a quarter of an hour after, about half a digit of the fun appeared to the naked eye to be eclipfed.

We had got ready a machine for receiving the image of the fun tho' a telescope of 6 Cbinefe feet in length, on a table below at right angles; from whole centre a circle, divided into Io digits after the Cbinefe manner, was accurately drawn to the magnitude of the apparent image : There were likewife ready several circles on clean paper divided in like manner (Fig. 8. Plate VII.) and to be applied fucceffively thereon; on which were marked the phafes of the eclipfe for each digit; according to the inclinations of the moon to the vertical line of the fun.

In the mean time another telefcope was directed to the fun, fitted with 2 object-glaffes, at fuch diffance from each other, that the threads placed in the focus of the telefcope, and in like manner divided into 10 digits, exactly anfwered to the apparent magnitude of the fun, and tho' this lat the moon's appule was fir!̣t observed.
H.
a. m.

II 40 at 3 dig. that is,
dig.
iI. 514 dig.

3 . 36 European dig.
4.48

Afterwards the fun Mining very bright, the digits were marked on the image, as follows.
p. m.

02 at the centre or 5 dig. that is 6 European dig.

Then the fun, being again overcaft with a thin cloud, his image was darken'd; yet with the above-mention'd telefcope he was plainly feen.
H. :
p. m.
$\begin{array}{llllll}1 & 39 & \text { emerfion at } & 5 & \text { dig. or } & 6 \\ 1 & 4 & 0 \\ 1 & 50 & 4 & 4 & 48 \\ 3 & 0 & 3 & 3 & 36\end{array}$
The fun emerging again out of the cloud exhibited a very bright image; on which were marked as follows.
H. : ॥

2920 emerfion 2 dig. or 224
$\begin{array}{lll}2 & 18 & 20 \\ 2 & 27 & 10\end{array}$.The end of the eclipfe; which was likewife obl ferved at the fame moment of time with ano ther very good telefcope, 14 Cbinefe feet length : In fine the fun himfelf corrected the clock both by fhewing on a large fun dial an an equatorial ring-dial of the obfervatory eacc minute of time, and alfo verifying the time by fome altitudes taken.

True time
p. m. The inmerfions and emerfions of fome folar maculd H. .

The larger macula that was in the very peripher immerged 2 dig. to the north-eaft.

- 2750 the ift?
- 3140 2d leffer maculee immerged between 2 di
- 3710 $3 \mathrm{~d} \int$ and I .
- $3^{8} \quad 35 \quad 4^{\text {th }}$ S
\(\left.\begin{array}{rrrr}1 \& 18 \& 45

1 \& 23 \& 50

2 \& 5 \& 20

2 \& 7 \& 30

2 \& 11 \& 25

3 \& 12 \& 25\end{array}\right\}\)| the two maculo emerged between 3 and |
| :--- |

Eclipfes of Jupiter's Satellites observed at Pekin in 1929 , I730, N. S. by F. F. Koegler and Pereyra. Phil. Trans. $\mathrm{N}^{\mathrm{O}} 420$. p. 182.

Satellite I.

Satellite II,
 Sat 1 -

Satellite II.

	D.	H.			
Sar.	18	10	13		6 after noon
	26	- 0	51		5 beture noon
	12	7	30		8 after noon
May	2 I	10	6		atter noon

Satellite III.

Satellite IV.

Immer. Dec. 1929 I 1240 hefore noon
Emer. : $\quad 5 \quad 4^{8} \quad 0$ before noon
Emer. Feb. $1730 \quad 6 \quad 5 \quad 38$ obefore noon: Dubious
Immer. $\quad 22 \quad 6 \quad 45 \quad 15$ after noon
Emer. II 30 o after noon.
An extraordinary foarp impoffinmation of the Liver; by Dr. Short. Phil. Tranf. $\mathrm{N}^{\circ} 420$. p. 184.

DR. Short had a patient, that died of an impofthumation of the liver: He opened him, and out of the loweft and thinneft lobes he took fix quarts of purulent, thick, intolerably fetid, reddifin brown, and very acid matter: For, no fooner was it expofed a little to the open air than it fermented exceedingly. The patient had the laft week of his life drained off the thinner part by violent vomiting and purging to 30 or 40 times a day: It was thrown into the duodenim by the ductus choledo. chus communis, and there pumped up and thrown out, both by its fharpnefs and fitimulus. All the upper part of the liver to about an inch below the gall-bladder was found. The tumour had compreffed the right kidney in fuch a manner, that it was cmaciated to lefs than the fize of the glanduld renalis.

UPwards of 20 years ago Dr. Halley added an appendix to the ad edition of Mr. Street's Caroline tables, containing a fet of obfervations he had made in 1683 and 1684 . ' for afcertaining the moon's motion; giving a fpecimen of what he thought at that time might be the only practicable method of attaining the longitude at fea. What he publifhed then, is as follows.

- The advantages of the art of finding the longitude at fea, - are too evident to need any argments to prove them : And - having by my own experience found the impra\&tibility of all other methods propoled for that purpofe, but that derived from a perfect knowledge of the moon's motion; I was ambitious, if poffible, to overcome the difficulties that attend the - difcovery thereof.
' And firft, I found it only needed a little pracice to be able ' to manage a 5 or 6 foot telefcope, capable of fhewing the ap' pulfes or occultations of the fixed fars by the moon, on fhip-- board in moderate weather; efpecially, in the firf and laft " quarters of the moon's age, when her weaker light does not for - much efface that of the flars. Whereas the eclipfes of \mathcal{F}_{4} - piter's fatellites, how proper foever for geographical purpofes, - were abfolutely unfir at fea, as requiring telefcopes of a greater - length than can well be directed in the rolling motion of a - fhip in the ncean.
- Now the motion of the moon being fo fwift, as to affurd us - fcarce ever lefs than 2 minutes for each degree of longitude, ' and fometimes 2 and $\frac{x}{2}$; it is evidene, that could we perfectly "prediet the true time of the appulfe or occultation of a fixed ' 'ttar, in any known meridian, we might, by comparing there-- with the time obferved on board a fhip at fea, conclude fafely " how much the fhip is to the eaftward or weftward of the me-- ridian of our calculus.
- But after much examination, and carefully collating the Ca -- roline tables of Mr. T. Street (tho' generally better than thofe - that went before him) as likewife thofe of \mathcal{T}_{y} (bo, Kepler, - Bullialdus, and our Horrox, with many accurate obfervations ' of the moon, carefully made on land; it does not appear that ' any of thefe tables do reprefent the motions with the certainty 'tequired; and tho' many times the agrecment feem futprizing,

224

MEMOIRS of the

' when the errors of the feveral equations compenfate one ano' ther; yet in thofe parts of the orb where they all fall the fame - way, the fault is intolerable, and the refult many times not to - be depanded oin, to more than 100 leagues; that is to fay, it ' is enitirely infufficient.

* Yet ftill this is the fault of the artift, not of the art: For, - obferving the periods of the lunar inequalities, which is per' formed in 18, years and 11 days, or 223 lunations; it is found "that the returns of the ecliptes, and other phenomena of the 'rnom's motion, are very regularly performed : So that what-- ever error you found in a former period, the fame is again re-- peated in a fecond, under the like circumftances of the fame - dintance of the moon from the fun and apogecum.
-Thus from the obfervation made of the eclipfe of the fun, * which was feen \mathcal{F} une 22,1666 , in the morning, at London and - Dantzitk, I was enabled to predict, with great certainty, "that other, which I obferved $\mathcal{F}_{\text {fly }} 2,1684$, by allowing the fame 'errar If found in the calculus of the former: And the like will - do with equal certainty, in the cafes extra Syzygias, when the - mean and fynodical anomalies are nearly the fame, about the - Cime time of the year.
- being thus affured, from the certainty of thefe revolutions, - that all the intermediate errors of our tables were not uncer'tain wanderings, but regular faults of the theories; I next "thought how 1 might beft be informed of the quantity and ' places of thefe defefts; that being apprized how much, and - which way my numbers erred, I might apply the difference; ' fi) as at all rimes to reprefent the true motion of the moon: - Nof was there any other way, but from the heavens themfelves. 'to derive this correction, by a fedulous and continued feries of "obercrations, to be collated with the calculus, and the errors - nored in an abacus: From whence, at all times, under the - like fituation of the fun and moon, I might take out the cor're?ion to be allowed.

And having by me the fextant I made to obferve the fouthern - hars at St. Holena, in 1677, I fixed it for this purpofe; re' 1 lving to have continued to obferve, till I had filled my ' abacus, fo as that it might have the effect of exact lunar ta-- bles, capable of ferving at fea, for finding the longitude with ' the defred certainry.

- With this defign, I applied the leifure I had in 1683 , to 'obferve diligently, as often as the heavens would permit, the ' true place of the monn, efyecially as to longitude ; and in the
fpace of about io months I had gotten near 200 feveral days obfervations, molt of which I collated with the Horroxian ' theory (whofe calculus is fomething more compendious than ' that of Mr. Street) and having placed the errors in an abacus, - I perceived how regular the irregularities were; and that ' where the moon had been exactly obferved formerly, at the ' diftance of one or more periods of 223 months, I could even ' predict the errors of the tables, with a certainty not much in' ferior to that of the obfervations themfelves. But this defign - of mine was foon interrupted by domeftic occafions; and fince : then, my frequent avocations have not permitted me to re-- fume thefe thoughts.
- In the mean time I have taken care to prefent my obfervafrions, fuch as they are, to the public; in order to preferve them; affuring that as on the one hand they were made with 'a very fufficient initrument, with all the care and diligence re' quifire: So in the remote voyages I have fince taken to afcer-- tain the magnetic variations, they have been of fignal ufe to a me, in determining the longitude of my fhip, as often as I ' could get fight of a near tranfit of the moon by a known - fixed fiar : And thereby I have frequently corrected my Four' nal from thofe errors, which are unavoidable in long fea-- reck onings.
- If therefore you happen at fea to obferve nicely the time of : an occultation, or clofe application of a ftar to the moon; and - can find a corrrefpondent obfervation, about the fame mean - anomaly and diftance of the moon from the fun (either among - thefe of mine, or in any other colleftion of obfervations, accu'rately made) effecially near the fame time of the year ; and : above all, after the aforefaid period of 18 years and in days, ' you miy, without fenfible error, from thence pronounce in - what meridian your ihip is; taking care in to operofe a calcu-- lation to comnit no mitake; and notwithftanding the direc"tion the moon gives you, not confiding fo much therein, as to - omit any of the ufual precautions to preferve a Ship when fhe ' approaches the land.
:I had intended to infift more largely upon this method of "obtaining the moon's place, and confequently, the longitude - at fea; but that 1 find that it requires a juft treatife too long - to be here fubjoined; and more efpecially, that the great Sir - If aac Nesoton' (to whom no mathematical difficulty is infupe-- rable) has given us a true and phyfical theory of the moon's - motions; whereby the defent of all former tables are fo far \therefore amended, that it is hoped the efror may icalce ever exceed Vor. 1 X .6
' 3 minutes of motion, or fo little in longitude, that perhaps, - it may be thought a fufficient exactnefs for all the ufes of naavigation. If therefore what is here offered find a kind ac-- ceptance fiom thofe that it chiefly concerns, I haall be encou-- raged ro proceed on a work I have long meditated, to improve - the abovementioned period, as to the abbreviating the compu: ation of eclipfes; and in general, to facilitate the too labo s.rious calculation of the moon's place extra Syzygias.'

Not long affer, ber late Majefty Queen Anne was pleas'd to bellow on the public an edition of the much greater and moft valuable part of Mr. Flamflead's oblervations; by help of which the great Sir TJace Newicn had formed his curious theory of the moon, a firt fletch of which was inferted by Dr. David Gregary in his Aftronomice Phyfice © Geometrice elementa, publimed at Oxford in 1702; and again in the fecond edition of Sir Ifaac Newton's Principia, which came out in 1713 , we have the fame revifed and tmended by himfelf, to that degree of exactnefs, that the faults of the computus, formed therefrom, rarely exceed a quarter part of what is found in the beft lunar tables extant before that time.
Being thus provided with proper materials, viz. a large fet of obfervations, and a theory of the motions fo very near the truth, Dr. Halley refumed his former defign of filling up his abacus or fynopfis of the defects of this lunar theory, and made tables to expedite the calculus according thereto, and compared the numbers thereof wish feveral of the moft certain of Mr . Flamflead's places obferved. By this ir was evident that Sir Jfaci had fpared no part of that fagacity and induntry fo peculiar to himielf, in fetting the epocka's and other elements of the lunar aftronomy, the refult many times, for whole months together, lately differing 2 minutes of motion from the obfervations themielves; nor is. it unlikely but good part of that difference may"have been the fault of the objerver: And where the errors were found greater, it was in thofe parts of the lunar orb, where Mr. Flamfead had very rarely given himfelf the trouble of olferving; viz. in the third and fourth quarters of the moon's age, where fometimes thefe differences would amount to at leat s minntes.
Mr. Flamfead was long enough poffeffed of the Royal Obfervatory to have had a continued feries of obfervations for more than 2 periods of 18 years; by which he had it in his power to have done all that could have been expected from obfervaition, towads difcoreing the law of the lunar motion. But he
contented himfelf with fparfe obfervations, leaving wide gaps between; fo as to omit frequently whole months together; and in one cafe, the whole year 1716 . So that notwithftanding what he has left us muft be acknowledged more than equal to all that was dore tefare him, both as to the number and accuracy of his accounts; yet for want of an uninterrupted fucceffion of them, they are topable of difovering, in the feveral fituations of the lunar orbit, what corrections are neceffary to be allowed, to fupply the deficiency of our compitus.
On Mr. Flamfead's deceafe; about the beginning of the year 1720, his late Majefty King George I. was gracioufly pleafed to beftow upon Dr. Halley the poft of his aftronomical obferver, exprefsly commanding him to apply himfelf with the utnoft care and diligence to the retifying the tables of the motions of the heavens, and the places of the fixed ftars, in order to find out the fo much defired longitude at fea, for the perfecting the art of navigation. Thefe are the words of his commiffion: And here the Dr. might have thought himfelf in a condition tos put in execution his long projected defign of compleating his abacus, or table of the defects of the Junar numbers: But upon taking poffeflion, he found the obferyatory wholly unprovided of initruments; and indeed, of every thing elfe that was moveable; which poftponed his endeavours, till fuch time as he could furnifh himfelf with an apparatus capable of the exáenefs requifite : And this was the more grievous to him; on account of his advanced age, being then in his fixty fourth year, which put him paft all hopes of ever living to fee a compleat period of 18 years obfervation.
But hitherro, he owns, he has had fuffitient healh and vigour to execute his office in all its parts with his own hands and eyes, without any affitance or interruption, during one whole period of the moon's apograun; which period is perfurmed in fumewhat lefs than 9 years. In this time he has been able to obfer e the right afcenfion of the moon at her tranfit over the meridian, near 1500 times (and with an exantneff, he is bold to fay, preferable to any thing done before) a number not lefs than thofe of Tycho Brabe, Hevelius and Flamfead, taken in one furo, there being near 4 of his lunar oblervations for each degree of the zodiac, as allo for each degree of the argumentumz onnum, or diftance of the fun from the moon's apogram: And that thefe might be duly applied to reftify the defeits of our computations, he has himelf compared with the aforementioned Ff
tablis,

228

M.EMOIRS of the
tables, made according to Sir IJaac Newton's principles, not only his own obfervations, but alfo upwards of 800 of Mr. Flamffead's.
This comparifon of his own obfervations (and from the time: he efteems them compleat) with the computus by the faid tables, being now continued for above 9 years, he defigns fpeedily to communicate to the public, together with the tables them-1 felves, which have been printed, and fhould have been publif'd long fince, had not his poft at Greenrwich given him ann opportunity to examine, with proper nicety, in what parts of the lunar orb, and how much, the numbers erred. So ufeful an addition as this, it is hoped, may fully anfwer the long delay'd expectation fome perfons may have had of feeing the tables fooner: By means thereof, thofe that are qualified may; ifi they pleafe, examine by their own obfervation the truth of what is here afierted.

Comparing likewife feveral of Mr. Flamftead's moft accurate obiervations made 18 or 35 years before (that is one or two periods before Dr. Halley's) with thofe of his own which tallied with them, he had the fatisfaction to find that what he had propofed in 1710 was fully verified; and that the errors of the calculus in 1690 and 1708 , for inftance, differed infenfibly from what he found in the like fituation of the fun and apogetum in i 7260 The great agreement of the theory with the heavens compenfat-: ing the differences, that might otherwife arife from the incommenfurability and excentricity of the motions of the fun, moon and apogeum.

Encouraged by this event, the Dr. next examined what differences might arife from the period of nine years wantine nine days; in which time there are performed very nearly 1 il lunations, or returns of the moon to the fun; but the return of the fun to the apogaum in that time differing above four times as much from an exact revolution, as in the period of 18 years, he could not expect the like agreement in that. However, having now entered upon the tenth year, he compared what he had obferv'd in 1721, 1722, with his late obfervations of 1730, 1731 ; and he rately found a difference of more than one fingle minute of motion' (part of which may probably arife from the fimall uncertainty that always attends aftronomical obfervations) but moft commonly this diference was wholly infenfible; fo that by the belp of what he obfervec in $5 \% 2$, he prefumes, he is able to compure the true place o the moon with certainty, within the compafs of the two minutes of her motion during this prefent year 173 I ; and fo for the future. This is the exactnefs requifite to determine the longitude at fea to 20 leagues under the equator, and to lets than 15 leagues in the \mathscr{B} ritifo channel.

It remains therefore to confider after what manner oblervations of the moon may be made at fea with the fame degree of exaEtnefs : But fince the worthy Vice-Prefident Mr. Hadley (to whom we are highly obliged for his having perfected and brought into common ufe the refleting, telefope) has been pleafed to communicate his molt ingenious invention of an inftrument for taking the angles with great certainty by reflection (vide Pbil. Tranf. $\mathbb{N}^{\circ} 420$.) it is more than probable that the fame may be applied to taking angles at sea with the defired aecuracy.
An Account of the Contrayerva; by Dr. William Houton. Phil. Tranf. $\mathrm{N}^{\circ} 42$ I. p .195.
Contrayerva is a Spanifh word, fignifying as much as berbe contra (venenct) or an herbagainit poifons. And as there are in all countries different plants to which that virtue is afcrib'd, the name of contrayerva feems to have been given by the Spaniards to as many of them as have come under their knowledge: For, Hernandez has defcrib'd a fpecies of granadilla by that name, and there are feveral other roors that are commonly known by it. But Dr. Houfon, far from pretending to give a hiftory of all thofe roots, only offers a thort account of that plant, whofe root is calld contrayerva here in England, and which is fo well known to all that any way deal in medicines.

The root iffelf being fo commonly known, it would be fuperfluous to defrribe ir, he, therefore, confines himelf to the defcription of the plant that produces it, which he had not hitherro met with to his fatisfation in any author.
F. Pluraier in his book entituled Nova plantarum Americanarum genera, defcribes a genus he calls dorfenia, of which the Dr. found two feecies in the Weft Indies; the roots of which are gather'd and exported indifferently, as being very much alike, borh in appearance and virtues. One of thefe he thinks may be calld

Dorfenaia Dentarise radice, Sphondylii folic, thacesta ovali. The other

The firft kind (Fig. I. Plate VIIL) feems to be the tuzpath of Hernandez, p. 147. Iis roots, which are perennial, put forth in the month of May (or as foon as it happens to rain) each fix or eight leaves four or five inches long, and as manys broad, cut into feveral fegments almoft as deep as the middlea rib, fomewhat after the manner of the fpbondylium: Theyy fland upon foottalks five or fix inches long; and from the middle of them come forth other footfalks fomewhat longer, fuftaining each a ftronge fort of body, flat, and fituated vertically, or with one edge uppermoft, which the Dr: hass call'd placenta. In this feecies it is of an oval figure, with its longer axis parallel to the footfalk. One fide of it iss fmooth and green like the outfide of the calix in other plants; but from the other arife a great many fmall yellow apices; and after they are gone, feveral fmall roundim feeds begin to appear, which when ripe are fomewhat like thofe of gromwellu or litbo/permon. It grows in the kingdom of New Spain, near old Vèra Cruz, on the high ground, by thè fide iof the river.

The fecond kind (Fig. 2.) has much the fame number of leaves, as the former, but of a different figure: For, fome of them are entire, and thaped like thofe of a violet; others angular like ivy; and fome almof as much divided as the leaves of the common maple. They are thin, and of a dark green colour, and fmooth, or have only a few, fcarce perceptible, hairs on the back. The pedicles that fuftain the fowers arife immediately from the root, as in the other fpecies, and attain to the fame height of fix or eight inches. But the placenta which fuftains the flowers is in this kind quadrangular, wav'd about the edges, and broader tranfuerfely than vertically. Yet the fowers and feeds themfelves are perfectly the fame as in the other. This fecond kind grows plentifully on the high rocky grounds about Campechy, where the Dr. gather'd it in perfection in the beginning of Nov. IT3.30.
The Dr. cannot guefs why F. Plumier has call'd this a monopetalous plant: For, that which the latter calls the potalum, and the former the placenta, is of a green colour; and (which is of more confequence) fuftains the feeds when ripe, and never envelopes the organs of generation when young: So that the Dre thinks it can by no means be call'd a peralum, nor even properly a calix; and therefore he has
given it the name of placenta, whofe office it certainly performs.
The Dr. has not been able to obferve exacely the ftructure of the organs of generation, becaufe of their exceffive fmallnefs; but they appear to the naked eye, as reprefented in the figures, and in Plum. N. G. Tab. 8. The Dorfenia Spbondylii folio, dentarice radice of Plumier differs from bath of the Dr's: For, in the former's drawings, done by order of the late King of France, of which the Dr. had feen a copy in the collection of the late Dr. Sberrand, the leaves are reprefented ferrated, the placenta quadrangular, and the roots confifting of feveral knobs tied together lengthwife. From which laft particular, the Dr. is perfuaded that the root of that fpecies is the darkena radix, mentioned by Chufus in his Exotics p. 83 .
Concerning Diamonds found in Brazil; by $\operatorname{Dr} r$. De Caftro Sarnento. Phil. Tranf. No +2 I. p. 199.

DR. De Caforo had the following account of diamonds from a gentleman, who for thefe 15 years laft pait had liv'd and dug gold in the gold mines in Brazil, belonging to the King of Portugal; and who brought from thence leveral diamonds of confiderable value, lately found in thofe places.
In the Prince's town, capital of the county 20 . Serro do Frio, belonging to the Government of the gold mines, there is a place near the faid town, calld by the natives Cay the Merin, where they ufed to dig gold for many years, as allo from a fmall river, calld $D o$ Nilso Verde. The miners, that dug gold in thofe places, turned up the grounds and fands of the banks of the faid river, in order to extract the gold therefrom, and by fo doing found feveral dianonds, which then they did not prize as fuch: For, fome of the miners kept feveral ftones for their figure and curiofiry; which ftones (tho' fo valuable) by length of time they neglected and loft; and did fo till the year $17=8$, at which time one of the miners coming to work there, and being better acquainted, deemed them to be diamonds, and made experiments upon them; and finding them really fuch, began to feek for the m in the fame ground and fand, where the former miners had ignorantly left them; and fo the reft of the people followed his example.

After

After they bad thoroughly examired the places aforefaid they began to featch for them in the river itfelf; and they actually find diamonds there, but with more difficulty ano trouble : For, in the former places they found them togethe among the earth and fand, as they lay; but in the river as the fand is more difperfed, they lie farther from one another.

Experience and common reafon teach the people theree that thefe diamonds came from another place by the current of the waters, and are not the natural produk of the fituation: where they now are found.

They are ufing all pomble diligence to find out the place where they grow. They have nut hitherro difcover'd it; but their great hopes are very much encouraged upon account ont having near the faid fituation feveral mounrains; wheree nothing is to be feen but fine folid cryftal rocks.

The diamonds, that have been found, are commonly from one grain to dix carrats; forie larger, and amongtt thefe onte of 45 carrats. Their colour, folidity, and the reft of thei properties are the fame with thofe of the oriental ones; only it was obferv'd, that thofe diamonds that lay more fuper ficially, and expofed to the air and fun, were more fourfy and coniequently loft more by polifling than the others.
Meteorological Obervations, made for fix Vears at Padua
by S. Polenus. Phil. Tranf. $\mathrm{N}^{\circ} 42 \mathrm{I}$. p. 20r. Iranglatec from the Latin,

IN the firf place it is to be obferv'd, that S. Polenus, in denoting the timer, has, after the manner of aftronomers? computed the beginning of each day from noon; and that he has made his obfervations a little after noon; unlefs otherwiff prevented.

He made ufe of the old ftyle in defigning the times, ane of the Englifh foot and its parts, in mearuring. And, if in the progreis of the obfervations, any of them be accommoda ted to the new ftyle, and Frembly meafures, he mentions tha alteration.
In meafuring the fnow, he caus'd melt it, and then ho mealur'd it in the fame manner as rain-water.

The tube of his barometer is pretty large, and the diame ter of the ciftern or veffel, containing the ftagnant mercurt is almoft 29 times the diameter of the tube: Wherefore, in the afcent and defcent of the mercury in the tube, the height of that in the veffel may be with fafety confidered, as invatiablc.
His thermometer is one of thofe of M. Amonton's invention, that illuftrious ornament of the French Acadensy, with a recurve tube terminating in a phial, or ball, whofe lower part is filld with quickfilver, and upper part with airs; and by the greater or leffer dilatation of the air, according to the different degrees of heat, the mercury rifes more or lefs in the tube: But becaufe the extremity of the tube is open; the true height of the thermometer muft be compounded, of the obferv'd height of the mercury in the tube of the thermometer, and of the height of the mercury in the barometer, collected together into one fum; and that height be fet down in the Ephemerides. His thermometer hangs in a room (where there is fcarcely ever any fire made) with one fide fronting the fouth, and with the other, the eaft; for he had no convenient place regarding the north. Upon immerfing the ball of his thermometer into ice; the mercury falls 47 inches 30 dec . and into boiling water, it rifes σ_{3} inches Io dec. He moreover always ufed the fame inftruments, and thofe directed towards the fame parts of the heavens.

Were it neceffary, it might be made appear, from the obfervation juft mentioned, and thofe above, that our air in the colder winter feafon very nearly approaches the cold of fnow, as has been oblerv'd in the Memoirs of the Royal Academy of Sciences at Paris for the year 1711, p. 2.) but in fummer, that the heat of our air falls greatly fhort of that of boiling water. But this is a thing plain of itfelf.
S. Polenus fets down the direction of the winds for every day; and denotes their feveral degrees of itrength, viz. when pretty ftrong, fronger, or ftrongeft of all, by the numbers 2, 3; or 4, omitting 0 , the fign of a perfect calm, and 1, that of the genclett breath of wind: "And there is no one, who is but indifferently fkill'd in thete matters, but knows, that in the loweft region of the atmotphere near us, where anemometers are placed, fome one particular wind is ofren obferv'd, while other and different winds reign in the upper regions.

Afrer premifing thefe things, the following table exhibits the quantities of rain-water, and of melted fow, collected rogether; as the fums correlponding to each month, and taken from obfervations, bear.

Vwe. IX. 6
G g

If the fame months of thefe fix years be collected together into one fum ; it will be found by the table, that the leaft: quantity of water fell in the month of February; as not? ex-: ceeding 9 inches 734 dec. and that the greateft quantity fell in the months of OEtober, which was 30 inc .570 dec. Befides, it eafily a ppears by the fame table, that the year 1726 wasi drier than the other years, there having fallen but 25 inchesi 328 dec. and that the year 1728 was wetter than the other years, in which were gather'd 52 inches 893 dec .

Befides, S. Polenus collected apart the numbers of the quantities of water, that fell in each feafon of the year; reck.. oning the feafons for each year, in fuch manner as to refer: the beginning of winter to the 10. of \mathcal{D} ecember of the preceeding year; and thus beginning the reft of the feafons at the: 10 of March, Tune and Sepember refpeEtively. The fums fourd are exhibited in the following table.

	Winter. Inc. dec.	Spring. Inc. dec.		$\mathrm{c.} \text { Ino }$	
	912	8	167	584	$3 \quad 327$
1726	815	9	006	355	析
1727	281	5	9 CbII	87515	497
1728	410	10	75212	8320	
1729	470	9	43	31013	3617
1730	693	8	81712		562
Sum					

From which table it is evident that the refpective quantities of water, in fummer and autumn for every year, was greater than that in winter and fpring.

If the refpective quantities for each feafon be collected into one fum ; and thefe fums be compared together, it will eafily appear, that the increments proceed in the fame order as the feafons do, beginning from winter; that is, that the leaft quantity of water is had in winter, a greater in fpring, a ftill greater in fummer, and the greateft of all in autumn.

It is very well known, that rain is indicated by the falling of the mercury in the barometer, and fair weather, by its rifing: To find out, therefore, in fome meafure, what thefe indications could do towards gaining fome anticipated knowledge by the barometer of future rain, he collected the days on which it rain'd in the aforefaid fix years into various fums, according to the variety of the winds, and the increafe and decreafe of the height of the barometer from the noon of the preceeding day to that of the day on which it rain'd. The table is as follows. The height of the barometer de- The height of the barometer encreafing on the noon of the pre-- creafing from the noon of the ceeding day to that of the day preceeding day to that of the day on which it rain'd.

on which it rai	dind.	day on which	it raind.
Nnmber of days it rain'd.	The wind what. on the noon of the days on which it raind.	Number of days it rain'd.	The wind what. on the noon of the day on which it rain'd.
86 61		64	N_{N}
61 33	NE	41 16	
38 28	S E	17	5 E
	S	21	
42	S W	15 20	S W
49	N W	20 17	N W
Sum 378	G	Sum 211	Aft

After finining this table S. Polenus was furprized that there: was no greater difference between the numbers of the increafe: and decreafe of the height of the barometer, than that between, 378 and 21 I .
He owns, that the height of the barometer increafing feveral times from the noon of the preceeding day to that of the day on which it rained; yet it began to dectreafe after the noon of the fame day on which it happened to rain: Beffides, that that increafe may be raken feveral times, as an indication of future fair weather fier a fhort rain; and that regard is likewife to be bad to the quantity of rain.

Xet often from thete no plea can be drawn for the conftancy of that law, ty which fome would make the decreafe of the heighe of the tarometer, the indication of rain, and its increafe the igdicadion of tair weather; fo that there is ftill fomething wanting, whereby to prognofticate thefe phenomena.

Upon a comparion like the former, of the days in the faid fix years, on which it fnow'd; he found that the fall of fnow anfwers better than rain to the decreafe of the height of the barometer; ; as may be feen in the following table.

The height of the barometer The height of the barometer decreating from the noon of increafing from the noon of the preceeding day to that on which it fnow'd. the preceeding day to that on which it fnow'd.

Number of days it fnow'd.
The wind what,

Number of	
days it finow'd.	The wind, what, on the noon of
the days on	
which it ingw'd.	

Befides, he collected the refpective fums of the height of the barometer and thermometer for every year; from which he afterwarde cxiracted the mean altitudes corrctponding to each day of the faid years, as is exhibited in the following table.

If moreover, the height of the barometer, not of each year, but of all the fix years be collected into one fum only, the mean height of the barometer, correfponding to each day of all the faid years, will be found to be 29 inch .70 dec .
And if the heights of the thermometer, not of each year, but of all the fix years, be collected into one fum only, the mean height of the thermometer, correfponding to each day of all the faid years, will be found to be 50 inch. 16 decim.
Wherefore, by bare infpection into the table, it is eafy to underftand, that the mean heights both of the barometer and thermometer for each day of each year differ but a very few parts from the mean heights of the days, that arife from thefe fix taken collectedly.
He then reduced the greateft and leaft heights of the barometer, as alfo the greateft and leaft heights of the thermometer into the following table, that they might be compared together at one view,

	管
	管

Royal Society.

	$\begin{aligned} & \text { a } \\ & \frac{8}{6} \end{aligned}$
	$\begin{aligned} & \text { OV } \\ & \text { is } \end{aligned}$
W్NONNONONNONNONO	
	$\begin{aligned} & \text { s. } \\ & \frac{5}{0} \\ & \hline \end{aligned}$

That

That the quantities of water, which fell, might be comparid with thofe in the Memoirs of the Royal Academy, he reduced the Euglifp meafures into French, by dividing a Royal Paris foot, into inches and lines. And he collected the fums for each year according to the N. S. as may be feen in the following table.

Years N. S.	inch of Paris foot	es
$x 725$	28	$1 \frac{1}{2}$
1726	23	$2 \frac{1}{2}$
1727	42	11
1728	49	$9 \frac{1}{3}$
1.729	34	
1730	3^{2}	$1 \frac{5}{8}$
	Sum 210	$3^{\frac{x}{2}}$

Wherefore, if 210 inc. and 3 lin. and $\frac{x}{2}$ be divided by 8 years; the quotient will be 35 inc. $\frac{7}{2} 2$ lin. the mean quantity of water that fell, correfponding to each year. The mean quantity of water that falls at \mathcal{P} aris in ayear (as it is in the Memoirs of the Royal Academy for the years 1911, 1714, 1919, and elfewhere) is reckoned to be 19 inches. Wherefore the mean quantity at Padua exceeds the mean quantity at Paris by 16 inches $1 \frac{\pi}{2}$ lines. Or, if we take for the mean quantity at Paris 18 inches eightlines (as is gather'd from three years obfervation in the Memoirs for 1719) the difference will be 16 inches $4^{\frac{7}{12}}$ lines. It therefore plainly appears, that a greater quantiry of water falls at P adua than at P aris.

It is to be noted, that from the noon of Augufl123, 1727 O. S. (the wind at north) to the noon of the following day, namely the fpa.e of 24 hours, there fell at Padua three inche's and a half lin. that is 36 and $\frac{x}{2}$ lin. of rain; which indeed is greater than any that ever fell at Paris in the fame face of time; as may be gather'd from the Memoirs of the Royal Academy

If the greateft height of the barometer, obferv'd at Padua December 20, 1730, be reduc'd to Paris meafure, it will be found to be 28 inches, 6 lines: But the leaft height of the barometer on December 8, 1725, will be found 26 inches 9 lines and $\frac{x}{4}$. Wherefore the difference between the greateft and leaft height of the mercury in the barometer will be 1 inch 8 lines and $\frac{3}{4}$.

In like manner affuming the fix years obfervations, which M. de la Hire made in the Royal Obfervatory at Paris (namely from 1699 to 1705) S. Polenus found the greateft height of the barometer on December 10, 1704, to have been 28 inches, 4 lines and $\frac{x}{6}$; and the leaft height on December 20,1703 , 26 inches, 5 lines; and confequently that the difference between the greateft and leaft height of the mercury in the barometer was i inch iI lines and $\frac{7}{\sigma}$. The difference therefore between the greateft and leaft height of the mercury in the barometer (according to the aforefaid obfervations) was found greater at Paris, than at Padua by 2 lines s_{2}. And it has been long fince obferv'd by fome, that thefe differences are found fo much the lefs, the nearer the places, where the obfervations are made, are to the equator.
In the next place S. Polenus proceeds to his oblervations on the magnetic declinations; and thefe he difcuffes briefly. It is now well known, that at different hours of the tame day, fome fmall changes happen in the declination of the magnetic needle; fo that the fame conftant declination is not to) be obferv'd for one entire day; but varies fometimes a few minutes of a degree: It is befides well known, that different needles (efpecially thofe touch'd by different mag. nets) do not entirely exhibit the fame declination, but fometimes vary fome few (and but very few, when the needles are made by good workmen) minutes of a degree. Exsepting therefore the very fmall variations, that eafly arife from thefe caufes, S. Polenus for thefe whole fix years obferved the declination of the magnet 13 degrees towards the weft. The compafs he makes ule of, and on which he greatly depends, was made by Bernard Facinus a knowing artift, and efpecially frilled in thefe matters, and very diligent; the needle is fix inches long, and weighs 32 grains. S. Polenus adds this one thing, namely, that he fufpects (for one cannot affirm any thing with certainty concerning fo imall a variation) that the declination of the needle did in that time rather decreafe than increafe 10 minutes.

MEMOIRS of the

An Accownt of the Coccus Polonicus; by M, Breynius
Phil. Tranf. No $421 . \mathrm{p} .216$.

M.Breynius (after having briefly accounted for the two - kinds of the cocci tinctorit now in ufe, viz. that of Pliny gather'd from the ilen, and the American coccus or cochinil) proceeds to give us the natural hiftory of the coccus polonicus, which be calls radicum; becaufe it is chiefly found adhering to the roots of the polygonum cocciferum, $K 0$ onaczeb ${ }^{\text {GPolonis C }} \mathrm{C}$. B. Kofmaczek Philofolla Herbareo Polon o This he takes to be the polygonum Germanicum, incanum, flore majore perenni Raii: Of which he has given a print with the cocci, as they ftick to the roots.

The coccus, he fays, is found fometimes fingle, fometimes more, nay 40 adhering to one plant of different fizes, from a poppy feed to that of a white pepper corn. It is roundifh, finooth, and of a purple violet colour, and in a thin cuticle inclofes a blood red fuccus: One half or more of it is cover'd with a rough, dark, brown crult, by which it adheres to the roots.

The countrymen gather it about Midfummer, and dry it with a fow fire in earthen platters.

In open glaffes he expos'd to the fun feveral of thefe cocci; and found that by the 24 th of σ uly, every one, according to its fize, had excluded a finall worm with fix feet. That part which feemed to be the head had two thort carneouss antenne: For, be could not perceive with glafes any thing either like mouth or eyes. On the back lengthways there were two fulit, more or lefs vifible, according to the different motions of the animalculum. Its feet feemed armed with claws, and the fiff pair fronger and datker than the reft The whole worm was of an obfolete purple colour, and had feveral briftles of a biown grey.

Thefe, after 10 or 14 days, lay in a ftate of reft, and foon becarne cover'd with an exceeding white fine lanuginoun fubftance, in which condition they continued five or eigh days longer, and then laid their eggs, 50, 100, or mort a-piece; which to the naked eye appear'd but like fo many red oblongifh points; but with glanes looked like ants eggs, almoft tranfparent with diluted blood red contents.

Thefe eggs, being again expofed in the fun about Bartio romere tide, were hatch'd a month after, when fome vernicul were excluded, which in the microfcope appeard to bo
hexapods of a purplifh hue, with two antenne at their head, and two greyifh briftles at their tails, fcarce vifible except upon black paper.
He fuppofes thefe laft excluded vermiculi, after fome wanderings, at laft to fix themfelves to the roors, and fome of the loweft contiguous branches of the polygonum, where being depriv'd of local motion and fenfe, by fome way or other, they imbibe that fuccus from the plant; and at laft become the cocci. fo call'd, or veficles full of that blood-red Juccus fo ufeful in dying.
A large Umbilical Rupture; by Mr. Ranby. Phil. Tranf.

$$
\mathrm{N}^{0} 42 \mathrm{I}, \mathrm{p} .22 \mathrm{I} .
$$

ABOUT fix years before, a man gave his wife a kick on the belly ; and from that time she complain'd of a pain; and a fwelling about the navel, which in time increas'd to about the fize of a man's head, feldom giving her any uneafinefs but by its weight; and that chiefly when her bandage was off, which the generally wore, except when her diet, or any other accident, brought on a diarrboa, which was always attended with colic pains, particularly, in the rupture; to eafe which, She had been advifed to iron it with a hot iron; and fhe had thereby burnt it fo often that there remain'd on the ikin feveral large cicatrix.s. Three days before her death fhe was taken with the diarrboea, attended with a flight fever.
Upon opening the bag, the caul furf prefented itfelf to view; the greateft part of which adhered to the peritoncum. Upon removing this, the fimall guts to the length of two clls and a half, were contained in this bag, together with all the colon, except fo much of it as is below the left kidney; and the beginning of the colon, with the coccum, was attached to the mefentery, in fuch manner, as to be but two inches diftant from the pylorus; which, with about one third of the ftomach, was by this means drawn into the bag. The beginning of the duodenum. juft enter'd the bag, and then returned out again; which, with but a fmall portion of the jejunum, Was the chief that remain'd in the abdomen.

Experiments concerning the Electricity of Water, by Ar. Stephen Gray. Phil. Tranf. $\mathrm{N}^{\circ 2 .}$ p. 227.

IN the former account of experiments in Pbil. Tranf. $\mathrm{N}^{0} .417$. P. 18, Mr. Gray detcribed the manner of communicating an attration to a bubble of foaped water: But he has now found, that even a body of water receives anattrattive viriuc, and alfo a repelling one, by applying the excited tube neatht, afier the fame manner as folid bodies do. To perform this cxperiment, he caus'd a wooden difh to be turned, with a frew bole at the bottom, but not fo far as to come thro' the wood: This was fcrew'd on to the upper end of one of the ftand, mentioned in the former experiments, the other top being taken off: The difh was about four inches diameter, and one inch deep. Then the ftand was fet on a cake of rofin, or a plate of glafs, or the brim of a drinking glafs, of of a cylindric one, fuch as are ufed for water-glaffes. The glafs muft be fift warmed; then the difh being filled with water, the tube is rubbed, and mov'd both underthe difh and over the water three or four times, witho ut touching them. Afrer it has been excited, not only the dish, but Iikewife the water, becomes electrical; and if a fmall piece of thread, or a narrow, nip of thin paper, or a piece of theetbrafs, commonly call'd tinfel, be held over the water in an horizontal pofition, within about an inch or fometimes more, any of the faid bodies will be attracted to the furface of the water, and repelled, but not to often as by folids: If a pendulous thread be held at fome diftance from the outfide of the difh, it will be attracted and repelled by it feveral times together with a very quick motion, but not at fo great a diftance as when the dim is empty.

An experiment thewing that water is attracted by the tube, and that the attraction is attended with feveral remarkable and furprifing phenomena.

This experiment being to be made with fmall quantities of water; Mr. Gray at fif made ufe of fome of the brafs concave little dimes, in which he formerly ground microfoopes; but he has fince caus'd make a more convenient apparatus, which coniftes of a fmall pedeftal of abour four inches and a half lung, the bafe of ivory about two inches diameter. Upon the upper end, as in the larger fland, there is a fcrew, upon which is ferew edes of the litile difhes, made of ivery: Of thefe he has feveral fizes, from three guarters to one tenth of an inch in diameter. When any one of thefe little veffels is
illed with water, fo as that it may fland above the brims of he cup, and has acquired a fpherical lurface (as it will do n the tmalleft cups) let it be fet on the table with the little tand to which it had before been frew'd, or which is better apon the large ftand mentioned above, the great difh being aken off, and the fmall plain top ferew'd on; being thus orepared, let the tube be excited, and held over the water it the diftance of abour an inch or more. If it be a large ube, there will firtt arife a little mountain of water from he top of the drup, of a conical form, from the vertex of which there preceeds a light (very vifible when the experiment is perform'd in a dark room) and a frapping noife, almoft like that when the fingers are held near the tube, but not quite fo loud, and of a flatter found. Upon this the mountain, if it may be fo call'd, falls into the reft of the water, and puts it into a tremulous and waving motion. Mr. Gray a few days before repeated this experiment in the Jay-time, where the fun fhined, he perceived that here were fmall particles of water thrown out of the top of the mount; and that formetimes there would arife a very fine team of water from the vertex of the cone, in the manner of a fountain, from which there iflued a fine ftream, or vapour, whofe particles were fo fmall as not to be perceptible. Yet it is cerrain that it muft be fo, frice the under fide of the tube was-wet, as he found when he came to rub the tube again'; and he has fince found, that tho there does not always arife that cylinder of water, yet there is always a fteam of imperceptible particles flirown on the rube, and fometimes to that degree as to be perceptible on it. When fome of the larger cups are to be made ufe of, they are to be fill'd as high as may be without running over: The furface will be flat about the middle part; but when the tube is held over it, the middle part will be decreafed into a concave, and the parts towards the edge be ralfed, and when the tube is held over againft the fide of the water, the little conical protuberance of water iffues out with its axis hotizontally, and after the crackling noife returns to the reft of the water; and fometimes there will be thrown out of it fmali particles of the fame, as from the fialler portions of water above-mentioned.

The laft experiment was repeated with hot water; when the water was attracted much fronger, and at a much greater diftance: The tteam arifing from the vertex was in this cafe vifible. and the sube was fprinkled with large drups of water, He tried
the experiment in the fame manner upon quickfilver, which wa likewife raifed up; but by reafon of its great weight, not to f great a height as the water; the fnapping noife was louder, ano lafted much longer than in the water.
The Metbod of making the"bef Mortar at Madrafs; by Mr Pyke. Phil. Tranl. N N° 22. p. 23 i.

TA KE 15 bufhels of frefh pit-fand, well fifted; add thereto is buthels of fione-lime: let it be moiftened on nacked with warer in the common manner, and fo laid 2 or days together: Then diffolve 20 pound of jaggery, which ii coarle fugar (nr thick moloffes) in water, and fprinkling thi liguor over the mortar, beat it up together, till all be wel mixed and incorporated; and then let it lie by in a heap. Thee boil a peck of gramm (which is a fort of grain like a tare, on between that and a pea) to a jelly, and ftrain it off thro' a coarfe canvats, and preferve the liquor that comes from it. Take alfd a peck of Murobalans, and boil them likewife to a jelly, pre derving the water in like manner as the other; and if you have a veffel large enough, you may put thefe 3 waters together, thaz is, the jaggery zuater, the gramm water and the Myrobalans. The Indians ufually put a fmall quantity of fine lime therein to keep their labourers from drinking of it. The mortar bea up, and when too dry fprinkled with this liquor, proves extra: ordinary good for laying brick or ftone therewith, keeping fom of the liquor always at hand for the workman to wet his brick with; and if this liquor prove too thick, difute it with frefl water. Obferve likewife, that the mortar here is not only to be well beaten and mixed together, but alfo to be laid ver! well; and every brick or piece of brick, flufhed in with thi mortar, and every cranny fill'd up, yet not in thick joints, like the common Euglifb mortar; and alfo over every courfe fom to be throwed on very thin: And where the work hath ftood tho' but for a breakfaft or dining time, before you begin again wet it well with this liquor, with a ladle and thenlay on you frefh mortar: For, this mortar, notwithftanding its being thu wetted, dries much fooner than one not ufed to it would con ceive, bur efpecially in hot weather. For very ftrong work th aforefaid mortar is improved as follows. Take coarfe tow an twif it loofely into bands as thick as a man's finger (in Eng land ox-hair is ufed inftead of this tow) then cut it into piec. of about an inch long, and untwift it fo as to be loofe; the ftrew it lightly over the other mortar, which is at the fame tim to be kept turning over; and to this ftuff to be beat into
reping labourers continually beating it in a trough, and mixng it till it be well incorporated with all the parts of the morar. And whereas it will be apt to dry very faft, it muft be requently foftened with fome of the aforefaid liquor of jaggery, ram, and myrobalans, and fome frefh water; and when it is o moiftened and bear, it will mix well, and with this they ouild (tho' it be not ufual to build common houle-walls thas) when the work is intended to be very frong: As for inftance, For Madra/s church fteeple, that was building when Mr. Pyke was laft there, and likewife for fome ornaments, as columns, good arched work, or imagery fet up in gardens, it is thus made. Tho' for cominon buildings about Madrafs, where the rainy feafon holds not above 3 months in the year, and fometimes lefs, they ufually lay all the common brick-work in a loomy clay, and plaifter it over on both fides with this mortar, which is fill farther to be improved. Thus far for buildingmortar. Having your mortar thus prepared, as is before de. fcribed, you muft feparate fome of it, and to every $\frac{1}{2}$ bufhel, you are to take the whites of 5 or 6 eggs, and 4 ounces of Gbee (or common unfalted butter) and a pint of butter-milk, beaten all well together : Mix a little of your mortar with this, till all your Gbee, whites of egos and buttermilk be foaked up; then foffen the reft well with plain frefh water, and fo mix all together, and let it be ground, a trowel full at a time, on a Anone, with a ftone-roller, in the fame manner as chocolate is ufually made, or ground in England; and let it fand by in a trough for ufe: And when you ufe it, in cafe it be too dry, moitten it with fome water, or the abovementioned liquor. This is the fecond coat of plaiftering.

Note, when your frit coat of plaiftering is laid-m, ler it be well rubbed on with a hardening trowel, or with a fnonth brick, and ftrewed with a gritty fand, moiftered, as "icafion requires, with warer, or the abovementioned liquar, and then well hardened on again," which, when half dry, take the laft mentioned compofition for your fine plaiftering; and when it is, almoft dry, lay on your whitening varnifit: But if your work Should be quite dry, then your CDinam liquor muft be wallied over the work with a brufh. The beft fort of whitening varnith is made as follows. Take one gallon of toddy, a pint of butter-milk, and fo much fine chinam, or lime, as fhall be proper to colour it, add thereto fome of the chinams liquor before mentioned, wafh it gently over therewith; and when it is quite dried in, do the lame again: And a plaifter thus made is more durable than time foff fone, and holds the weather better in India, than any of the bricks they make theré. In fome of

248

the fine cbinam, that is to endure the weather, and where it i likely to be fubjest to much rain, they put oleum fefami, gin gerly oil, inftead of ghee; and likewife in fome they boil thr bark of the mango-tree, and other barks of aftringent natures: and aloes, which grow in great plenty by the fea-hore. Bu to all the fine cbinam, which is for outfide plaitering, they pu butter-milk called Foyre: And for infide work they ufe glue made very thin and weak, inftead of fife, for white-wafhing: and lometimes they add a little gum to it.
N. B. Whereas fundry ingredients here mention'd are not tc be had in England, it may not be amifs to fubftitute fomething more plentiful, which Mro Pyke takes to be of the fame nature As to all the aftringent barks, he takes oaken bark to be as good as any: Intead of aloes, either turpentine, or the bark and branches of the foe-tree. Tho' turpentine be not fo ftrong; yet if uled in greater quantity may ferve for the fame purpole. But there is a fort of aloes bepatica, very cheap. Inftead of myrobalans, fome juice of aloes, or floes; and inftead of jasgery, coarfe fugar, or moloffes, will do; inftead of toddy, which is a fort of palm-wine, the liquor from the birch tree comes near to it.

Note, that in China, and fome other parts, they temper their mortar with blood of any fort of catte; but the ingredients beformertioned are faid to be as binding, and do full as well, and make not the mortar of io dark a colour as blood will do. The plaiftering above detcribed is thought in India vaftly to exceed any fort of fucco sork, or plaifter of SParis; and Mr. Pske has leen a room done with this fort of terras-mortar, that hat fully come up to the beft fort of wainfcor work, both in fngothnels and beaury.
A fingupar fort of Colic ; by Dr. Huxham. Phil. Tranf.
$\mathrm{N}^{0} 422 . \mathrm{p} \cdot 2 \mathrm{j}$. Trangated from the Latin.

AMan of 40 years of age, of a bilious and foorbutic habir, for a long time greatly laboured under colic pains, ef pecially in the lower region of the adomen, befides, continual and troublefome flatus's. About 2 or 3 years before his death he had bilious, purulent, and very fetid fools, fometimes with mucnus, and fomermes bloody clots; and fo frequent, that very often he would go to ftnol 20 times in 3 or 4 hours, with his tenefmus fill upon him : At length, there broke out fungous, livid and black caruncles, fome of which were at leaft as big as a nutmeg. But however frequent his going to ftrol generally was; yet fometimes, efpecially in the height of the diforder, he would be very coftive and in exquifite torture, fo
that there was a neceffity of ufing either clyfters or cathartics. And at times, the patient would, as if ftarved, greedily devour whatever was given him; and again nauteate the mof exquifte dainties: He became dally more enaciated; his urine was always bilious, and in lefs quantity; and his countenance wan, and often of a yellowifh caft. He bore his long and painful illnefs with the greatef refolution, till at length an oedematous fwelling in his feet, a delirium, the facies Hippocratica, cold and clammy fweats (the cerrain prefages of death) came on.

Different preparations of ipecacubana were prefcribed by feveral of the moft ikillful and celebrated in the whole profefion; as emerics, fomachics, deobitruents, incarnatives, balfamics, and all forts of aditringent clyfters; but all were ineffectual, only that laudanum gave the patient dome fhort relief. The Britol, Bath, Spaze and Pyrmont waters, and a long continued and exast milk and vegetable diet were all tried to no purpofe; tho' for a few days he tometimes would feem a little refrefh'd.

Upon opening the abdomen we obferved the omentum entirely confumed and putrid, the liver very much fwelled, and fall of whitifh, hard, fcirrhous tubercles; the gall bladder half full of a blackith bile; the whole duodenum with the neighbouring part of the colon tinged of the fame colour; the pancreas exceeding firrhous, the middle of the ileum inflamed for about 5 inches, and almolt livid: The kidneys were pretty found, and the mefenteric plands not fo ícirrhous, as we might have expected. But what was moft remarkable, the upper part of the colon (which the ancients improperly called cocum, a name rather applicable to its appendix) was not faftened, as ufual, by means of the vermicular appendix to the right kidney, or rather to the internal lamina of the peritonceum, which envelopes the kidney; hut falling into the pelvis about 3 inches below Tulpius's valve, ftrongly adhered to the upper part on the rectum: It moreover flightly adher'd to that tunic of the $p e$ ritoncum, that expanded over the bladder; from thence reflected upwards, and forming a very acute angle with the upper part of the inteftine (if it may be to call'd) and then afcending under the hollow of the liver, and extending itfelf below the bortom of the fomach, it defcended in the ufual manner, and terminated in the rectum. Upon our firt nbferving the inteftines both above and below the adhefion to be gangrenous, and futpeeting that here lay the feat of the diftemper, we began to lay open the rectum very cautiounty and nowly; upon which, we obferved the internal coat lphacelated, and black, as if tinged with ink, and exceedingly mortified; befides Vol. 1X: 7
it had σ or η blackifh, fungous, carunclesadhering to it, the leaft of which was as big as a filbert. Upon fearching farther, we : found an thlcer, that penetrated from this inteftine into the colon, at the place where they unite, and into which one's finger could eafily enter. The intelines were fo morified, that they could fcarce bear the genteft touch. We oblerved the greater part of the colon fruffed with harden'd feces, tho' the patient had had feveral liguid hools a little before he died; the thinner feces paffing ditectly thro the ulcerated or fice into the recturn, whilt the harder remained in the colon. The bladder was exceeding flaccid, and lined on the infide with a reddilh mucus.

Prom this faithful hiftory of the difeafe, and from what was obferved upon opening the body, we may eafily conjecture what was the caule of it: For, it is well known from anatomy, that a concretion of the inteftines with one another, or with the peritoricum, does exceedingly impair the periftaltic motion. Vide Cowperi Anatom, explic, Tab. 34. Upon which enfues an exceeding now and weak protrufion of the feces at the place of concretion, a collecting of them together, and a foppage: So that it is probable, that either an inflammation or erofion of the intelline, an ulcer, and at length a gangrene, in a perfon fo exceedingly cacheetic, was occafioned by hard and fharp bodies, as plumbfones; or by acrid and bilious humours, not fufficiently propelled by the vermicular morion, but ftopped at the acictite angle of the colon.
conjectureconcerning tho Nature and Manner of farming Saturn's Ring, the appearing and difappearing of Jome fixed Stars ; by M. Maupertuis. Phil. Tranf. N ${ }^{\circ} 422$ P. 254 Tranjlated from the Latin.

T$H E$ confideration of the different figures, which fluids may put on, according to the different rati, of gravity to the centifugal fore, luggefed to M. Marpertuis, that probably the planers have fich forms; fince for this there is only neceffry a fwitter motion round the axis, or a lefs denfiry of matrer: For, tho tew planets, that we know of, come fufficiently near a fpheroidsal figute, why may we not admit of other forms, cither about other lins, or even our own? Thefe lentiform planets would never be feen by us, either by reaton of their diffance, or becante they would be in the plane of the ecliptic, of in a plane fomewhat jnclined thereto, in which plane theit axis of revolution would be perpendicular, or nearly fo: For, in this fituation they could not be feen from the earth.

And why might not fuch a varie:y of forms obtain among
the fixed flars? Efpecially, fince it is exceeding probable that they revolve round their axis, like our fun. There are protably lentiform fixed ftars in the heavens; and probably they are furrounded with very excentric planets, or comets, which, fince they are not fixed in the plane of the equator, when they approach the perihelion, difturb the direction of the ftar's axis; and then the far, which by reafon of its fituation does now dif. appear, appeared; or that, which appeared before, does now ditappear. And fo a reafon might be affigned, why fome ftars feem to appear and difappear alretnately:

But if in any fyftem a comet with a tail move near fome poweiful planet, what will be the confequence? Why, the matter emitted from the body of the comer, will be attraced round the planet; and by the comet's fending out new matter, or a fufficient quantity being already emitted, there will arife a continual fux of matter round the planet : And tho' the column, emitted from the conet, may at firt be either of a cylindrical, conical, or any other form, yet its centrifugal force together with the gravities arifng both from the planet and from the effluent-matter, will always render it broader and thinner; and this incurvated column will approach to tome of the forms determined in Prob. 2. of Maupert. Differt. on the figures of fluids, turning round an axiss." And thus a reafon might be affigned for Saturn's ring, the moft furprifing pheromenon in nature.

And while the tail of the comet would furnifh the planet with fuch a ring, the coinet itfelf might probably be attracted, iffat a due diftance, and become a new fatellite to the planet: And thus probabiy feveral comets have furnifhed out both, Saturn's fatellites and his ring: For it is not likely that Saturn's ring is owing to the eflluvia of one comet, fince it profels a fhadow upon Saturn's difk: whereas the matter of the tails of comets is fo rare that the ftars may be feen to fhine thro' it. Saturn's, ring therefore feems to confift of the tails of feveral comets, whofe matter is become more denfe on account of Saturn's attraction.

It is evident that a planet may acquire fatellites, and yet not a ring : For, all comets have not a tail: and if a comet without a tail be attrasted, it will furnifh the planet a fatellite without a ring.

The great Sir Ifacc Neroton has concluded that the vapours of comets are difperfed among the planets; nay he reckoned this communication neceffary, in order to repair the loís of liquid matter. And Dr. Halley and Mr. Whifton are of opinion that both comets and their talls, caute connderable chaages in

M EMOIRS of the

the planets, as the variation of their poles, delages, and confiagrations; but comets may poffibly produce more benign effects; and even fometimes fupply the planets with ufeful and furprifing things.
Of the Arcutio ; by Mr. St. John. Phil. Tranf. No 422 :, P: 256.

WHEN Mr. St. Fobn confiders how many are charged overlaid in the bills of mortality, he is furprited that the arcutio's, univerfally uled at Florence, are not made ule of in England.
Fig. ${ }^{2}$. Plate VIII: reprefents one, drawn in perfpective, with the dimenfions, which are larger than ufual; a the place where the child lies; b the head-board ; c the hollows for the nurfe's breafts; d a bar of wood to lean on, when the fuckles the child; e a fmall iron arch to fupport the faid bar: The length is 3 feet 2 inches and $\frac{\pi}{2}$.

Every nurfe in Florence is obliged to lay the child in it, un: der pain of excommunication. The arcutio, with the child in it, may be fafely laid entirely under the bed-cloaths in the winter, without danger of finothering.
An extraor dinary large left Horn of the Stag kind, taken out of the Sea on the Coaft of Lancallire; by Mr. Hopkins. Phil. Tranf. $\mathrm{N}^{\circ} 422$. P. 257°

THE dimenfions of this horn are exactly fet down, as Mr. Hopkins took them himfelf, by laying a ftring along the furface, ase (Fig. 4. Plate VIII.) reprefents the length; be ing 30 inches; 65 the circumference above the third branch, 7 inches; 6 the circumference above the decond branch, 8 inches; $d d$ the circumference between the brow and fecond antler, is inches; ee the circimference so inches; de the circumference of the brow-antler, σ winches and $\frac{3}{4}$; of the length of the aniler, 16 inches $\frac{3}{4}$:

This horn was drawn out of Raven's barrow hole, adjoining to Holker old Park, by a fifherman's net, on the 2oth of fune 1727. The tide flows conftantly where it was found, and the land is very high near it.

- It is now in the poffeffion of Sir Thomas Lowther of II Iolker. in Carmell in Lanicapire.
Three extraordinary Cafes. I. A Cbild born with the Borvls hanging out of the \dot{Z} elly. 2. A Suppreflion of Urine in a Woman; and 3. A Stricture in the Middle
of the Stomach, dividing it into two Rags; by Mr. Claudius Amyand. Phil. Tranf. N 42 . P. 258.

DEC. 18. 1730, a child was born with the greateft part of the bowels hanging out of the belly, thro' an aperture about half an inch in diameter, on the right fide of the navel ftring. The birth was natural and eafy.
Mr. Amyand being call'd, found the aperture lined with a fkin, and a ligament that oppofed the reduction; the parts were livid and tending to mortification; yet the child liv'd near three days.
Upon opening the body, he found the prolapjus to confift of all the fmall guts, except the duodenum, and of all the large ones, except a fmall porrion of the rectum: The gallbladder was about two inches long; one half of which ftood out of the abdomen, as alfo a fmall portion of the ftomach: All thefe were coalefced together, and confounded in fach manner, that it was impoffible to feparate them; tho upon blowing, the inteftinal tube feemed to have its ufual length. The liver was much thicker and larger than ufual, and convex in that part of it that is naturally concave: And the uterus and bladder prefs'd on the lefr fide, by the weight of the bowels preffing on the right.

The mother could affign no caufe for this preternatural formation. The child came at full time : but its inquietudes for fome months before the birth, made the mother apprehend be was not well.

Mr . Amyand was call'd to a woman who had a fuppreffion of urine, occafioned by the menfes, collested in theigagince preffing upon the urethra. She had been delivered eight months before of two children; afier which the cartuncule myrtiformes had joined together fo clofely, that there was no room for any evacuation of the, menfes. Mr. Amyand made a crofs aperture, whereby near three quarts of the menfes collected were difcharged The fuppreffion of urine was immediately remov'd, and the patient cured.
Upon opening the body of a young country girl, dead of a confumption, Mr. Amyand found her lungs tieppurated in feveral places, and a ftrigure in the middle of the ftomach, dividing it into two bags. This fricture appeated to hive been of fome ftanding, and likely to have wecafioned fome difficulty in digeftion. But upon enquiry, her miftrefs and fellow fervants faid, that her appente and digettions were natural; and that the had continued in a good plight; till upon coming to London the contrated a cough, that bud brought on the contamption.

An Abfract of Meteorological Diaries; with Remarks upon them; by Dr. Derham. Phil. Tranf. N${ }^{\circ} .4^{2} 3$. p. 26 r .
A Table Sewing the Height of the Mercury in the Baron meter, the Craft and Strength of the Winds, and the Weather, on the fir Day of eight Months in 1707, I707-8, obferv'd at Coventry in Warwickshire, by Mr, Beighton; and at Upminfter in Effex by Dr. Derham.

Coventry.

Upminster

UPMinster.

$\overline{\text { Month }}$	Barom.	Winds.	Clouds.	Weather.
	$\left\|\begin{array}{\|cc\|} \hline \overline{0} & 0 \\ ? & 0 \\ ? & 0 \end{array}\right\|$			
July.	$\left.\begin{array}{\|cc\|} \hline 29 & 39 \\ & 36 \\ 52 \end{array} \right\rvert\,$	$\begin{aligned} & S^{2} \\ & W^{7} \end{aligned}$	$\begin{gathered} S W \\ S W \mathrm{WW} \end{gathered}$	Showers and ftomy.
Auguft	58	Wbs ${ }^{\circ}$		Fair and fome clouds.
Sept.	$\begin{aligned} & 33 \\ & 29 \\ & 38 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{bW} \mathrm{~W}^{5} \\ & W b S^{8} \end{aligned}$	SSW	Storms with fhowers.
Octob.	$\begin{array}{l\|} 13 \\ 14 \\ 14 \end{array}$	$\overline{\text { WSW }}$		$\begin{aligned} & \text { Stormy } \\ & \text { day. } \end{aligned}$
Nov.	$\left.\begin{aligned} & 81 \\ & 84 \\ & 82 \end{aligned} \right\rvert\,$	$\overline{\text { NWbW }}$		Cloudy.
Dec.				-
Jan.	$\begin{aligned} & 01 \\ & 00 f \end{aligned}$	NNEO		$\begin{aligned} & \text { Cloudy } \\ & \text { dark } \end{aligned}$ day.
Feb.	$\left[\begin{array}{l} 62 \\ 59 \\ 52 \end{array}\right]$	$\overline{\mathrm{NNE}}$		Frolt and frow. with fair.

256
 MEMOIRS of the

Table foewing the Coafting and Strength of the Winds and the Weather eve firft Day of the Month in 1715, and the Quantity of Rain in that Mont! obferv'd at Harvard-College in Cambridge in New England, by Mr. The Robie; and the Height of the Mercury in the Barometer, the Coafting al Strength of the Winds and Clouds, the Weather and Rain at the fame Time © Upminfter; by Dr. Derham.

Harvard College.

Month.	Wind	Rain.	Weather.
Jan.	$\begin{gathered} \hline \text { WNW } \\ \text { WbN } \\ \text { S } \end{gathered}$	15. 17	
Febr.	$\begin{aligned} & \text { SWI } \\ & \text { SW } \\ & \text { Wo } \end{aligned}$	12. 22	Hazy. Snow. Cloudy.
March.		5. 14	Hazy. Cloudy.
April.	NWbW5	12. 71	Snow.
May.	$\begin{array}{r} \text { Calm. } \\ E_{3} \\ \mathrm{E}_{4} \end{array}$	13. 14	Frof. Serene.
June.		13. 63	
July.	NWbW_{2}	14. 42	Showery.
Auguit.	NWo	9. 64	Serene and pleafant.
Sept.	$\begin{gathered} \hline \text { NEO } \\ \text { EI } \\ 0 \\ \hline \end{gathered}$	Sept. and	Fair.
Ostob.		$\left.\begin{array}{\|l\|} \hline \text { Octob. } \\ 30 . \end{array} \right\rvert\,$	
Nov.	Wo Ni	7. 24	Fair with cloudy.
Dec.	$\left.\left\|\begin{array}{cc} \hline W & \\ W & N \end{array}\right\| \begin{gathered} 3 \\ W \end{gathered} \right\rvert\,$	5. 83	Fair and cold.

 preceeding Table, except the Rain in New England, whici Mr. Robie omitted.

Harvard-College.

The remarks on the foregoing tables are, as follows.

1. Dr. Derbam obferves that there is a great agreement between the barometers at Coventry and Upminfter, in their rifing and falling near the fame time, at leaft not many hours before or after one another, and for the moft part in the fame proportion; as alfo that when one is ftationary, the other is fo too, efpecially if of any continuance: But at Coventry the mercury is lower than at Upminfter about a tenth of an inch; the firua-i tion at Coventry being, he fuppofes, higher than that of $U p$. minfter about 82 feet, according to his experiments in P bil. Iranf. No 236.
2. He likewife oblerves a greater conformity between the winds, than (confidering the caufes of their perpetual change) could be imagined: For, tho' they may vary a point or two; yet generally thro' all the 8 years, they tended nearly towards the fame point of the compafs, and changed in one place as they did in the other; efpecially when they blew ftrongly, or were of fome continuance. He oblerved, that a ftorm in one place is fo in the other; of which the diaries at large give feveral inftances; and in this table of 1707 in September and October, where Mr. Beightoin has noted the wind's ftrength to be 3 and 4, it is about the fame ftrength with the Dr's of 5,6, 7 , and 8 ; the latter taking in more degrees of the ftrength of the winds than the former does.
$\hat{3}$. The Dr. likewife obferves, that the weather in each place is for the moft part nearly the fame.
3. He has often obferved, that the falling of the mercury int dark and cloudy weather betokens rain; but the rain is always preceeded with fair weather: And when the fair comes, the foul is not far off; and this chiefly happens, when the wind is in any of the eafterly points.
4. In fanuary $1706 \cdot 7$ feveral were troubled with cuticulan eruprions, which itch'd much: After this the mealles were epi demical till the latter end of Nay.
5. The beginning of this year being very dry, and the wea ther often cold (as appears by the Dr's tables at large) hay was farce, and became very dear.
6. 'fuly 8 , commonly called the bot thurfday, was the hot reft day that happened fince he began his meteorological obfer. vations. A young man working in haryeft harder than ordinary, was overcome with the heat, and died ; and divers horfes on the road that day dropped down and died.
7. In November and December the air being moift, and frequently cold, coughs were epidemical with us.
8. He obierves that the unfeafonable frofts in April 1708 (particularly April 25 th and 26 th) blafted the tender young leaves and catkins of the oak, walnut-tree, Ě̌r. which he takes to be the reafon that there were but few acorns and walnuts that year. Whence it may juftly be concluded, that the catkins are of greateft ufe to the fertility of fuch trees that bear them; but whether as a male fperma he does not determine.
9. This month of April horfes were likewife every where feifed with dangerous coughs, of which feveral died in London, and other places, efpecially fuch as labour'd on the roads. The Dr. thas great reafon to think thefe colds were catching; becaure his horles that went well to London returned with great and fudden colds.

1r. Fune II, (tho' the day of the fummer folftice) was followed by a very cold night, his thermometer defcending nearly to the paint of hoar-froft.

At Dr. Derbam's requeft the late ingenious Mr. Robie made in $1715, \mathcal{E V}^{\circ}$ c. to the end of 1722 , meteorological obfervations (of which the foregoing is an extract, and with which he joined fome obfervations of his own, which tally with them) in New. England, morning, noon and night, to correfpond with the Dr's at the fame time at Upminfler.

Mr. Robie's obfervations want thofe of the barometer and thermometer; neither of which inftruments could be gotten in Nerv-England. Could we have had thofe obfervations, they would have been of great ufe in feveral phenomena of thole diftant places, which now can only be gueffed at: And,

1. That tho' Harvard College is 10 degrees more fouth than Upminfer (it being as Mr. Robie fays in Lat. 42 deg. 25^{\prime} north, and Long. from London $4^{\text {h }} 44^{\prime}$, as corrected by the beft obfervations) they have as cold, if not colder feafons than we have here.
2. Tho' the ordinary agreement or difagreement of the winds deferves no remark; yet it may deferve oblervation, that when the winds have continued long in one point, they have nearly agreed in both places, and efpecially, when they have been high, and ftrong for fome time. In which cafe the Dr. has obderved that there have been fome days difference in the coming of thofe winds; as if there were to many days in their paffage from place to place.

And this agreement of the winds, together with that of the afcent and delcent of the mercury before-mentioned, divers curious obfervers have taken notice of, as well as the Dr. between diftant places, tho' not fo far as New. England; as at Zurich, ${ }^{-}$Paris, Lancafbire and Upminfler; as may be feen in the Philofopbical Tranfaitions, particularly \mathbb{N}° 208, 286, 297, 321 .
3. The Dr. obferves, that they have in Nerv-England many more parbelia, balo's, lunar rain-bows, and fuch like appearances; as allo more eartbquakes, unufual metrors, thunder ard lightning than we have.
4. The rain in 1715 . (which was the only year in which Mr. Robie obferved it) in the different months, amounted to different quantities; but in the whole year, it was nearly the fame as at Upminfer; that at Harvard-College being 130, 64 lb . that at Upminfer $\mathrm{I}_{2} 8,92 \mathrm{lb}$. But confidering that Mr. Robie's tunnel, that received his rain, was but II inches and $\frac{x}{2}$ in diameter, and the Dr's exactly 12 ; the proportion, therefore, of the Nerw. England rain may be accounted fomewhat the greater.
5. The Dr. obferved at Upminfter, that in January the contagion, which was very fatal among the black cattle about London the latter end of the laft year, came among us and deflioy'd feveral.

In March many were afflifed with head-aches; and the fmall-pox was epidemical: And the earth being very dry, the ponds empty and the forings 1 w , in that and the next month there fell good fore of fealonable rain, as the table for that year fhews, but not fufficient to fill the ponds. But in fune, Fuly and Auguft more rain fell than was wanted; which filled the ponds, but injured the hay and corn; and made the roads as dirty as in winter.

In the fummer of this year the Dr. had feveral confirmations of fome former obfervations in his phyfico theology lib. I. c. 3 . viz. that a cold fummer is commonly a swet one; which this fummer was, the ipirits in the thermometer being often low, particularly near the point of hoar froft on Aug. 12 .
In fanuary the following year, viz. Iy 16 , the river of Thames was frozen for fevera! miles; and in particular fo intenfely at London, that whole fltreets of boorhs were erected on the ice, oxen roaffed, coaches driven, and feveral diverfions exercifed above bridge: And fo ftrong was the ice below bridge, that people walked and fated at pleafure thereon? But ger the
pirits in the thermometer defeended not all the while fo low, as on Dec. 30, 1708.
In Scotland likewife (which in 1708-9 felt but little of that year's fevere froft) the ice was ftrong enough to bear the horle and foot of the armies.

And beyond fea'they fuffer'd much; particularly in Spain, a great deal of damage was done by the wild beafts, which were forced by the froft out of the woods.

Among birds, the goldfinches fuffered much, having fcarce obferved one of them all the following part of the year; they being killed by the hard weather, or driven to feek food in other parts.

On the ——day of 一- the wind was fo violent, that the Thames was emptied from London-bridge, as far as -_; fo that only a finall rivulet of water, no bigger than a brook of 10 or I_{2} foot over, remained: Infomuch that people walked on the bottom, and found treafure there.

In November and December pleurifies were frequent, and mortal in our parts of E/fex. The weather was mild, open, dark, and damp for the moft part, with now and then a cold day or two.

Mr. Robie farther remarks, that on Feb. 12, 1715.6 there had been an earthquake at Salem village; and on October 21 following, the day was fo dark, that people were obliged to light candles to eat their dinners by ; which could nor be owing to atr eclipfe, the folar eclipfe baving been the 4 th of that month.

On February 13, 1716.7, Mr. Robie obferved an immerfion of 'fupiter's firf fatellite, at $10^{h} 48^{\prime} 17^{\prime \prime}$; and on February 8 , Dr. Derbam obferved an emerfion at $8^{\text {h }} 7^{\prime} 3^{\circ!}$; according to which the difference of longitude between Harvard college and Upminfter, is $4^{\mathrm{h}} .45^{\prime}$; and Mr . Robie fays, that by the lateft and beft obfervations it is $4^{h} 44^{\prime}$ from London.

Sep. 23, 1717, Mr. Robie obferved a folar eclipfe.

The beginning at	12	2	
The middle at	I		
The end at	3		

About 9 digits were eclipfed.
Octover 5 following, he obferved the fouthing of the moon at $2^{n} 3^{\prime}$ p. m.

MEMOIRS of the

On Feb. $25,1717-8, \mathrm{Mr}$. Robie faw the moon cover Aldebaran at about $9^{\mathrm{h}} 18^{\prime} p . m$. and the ftar to emerge at $10^{\mathrm{h}} 20^{\circ}$ p. m. by his meridian inftrument (fuch as Dr. Derbam has defrribed in Pbil. T'ranf. $\mathrm{N}^{\circ}{ }^{291}$) being 2^{\prime} too flow; fo that 2^{\prime} are to be added to the time mentioned.

March 10, 1717-8, Mr. Robie obferved an emerfion of the firlt Circumjovial at $10^{\text {h }} 45^{\prime} 35^{\prime \prime}$.

Sep. 24, 1718, Mr. Robie obferved the moon to fouth at $9^{\text {h }}$ 38^{\prime}, or thereabnuts: On the $25^{\text {th }}$ at $10^{\text {h }} 22^{\prime} 32^{\prime \prime}, p . m$. On the 26 th at $\mathrm{II}^{\mathrm{h}}{ }^{2} 2 \sigma^{\prime} \mathrm{p}$. mo

December 5, a great fiery meteor was feen in the morning about break of day. And on the 9 , about $\frac{1}{2}$ an hour after 10, in the S. S. W. he obferved another, which diffufed a light like the moon.

Def. 19, the moon fouth'd at $6^{\text {h }} 45^{\prime} 45^{\prime \prime} p . m$. On the 20 . at $7^{n} 30^{\prime \prime} 50^{\prime \prime}$. On the 23 . at $9^{h} 54^{\prime} 5^{\prime \prime}$. On the 25 , at $11^{\text {h }}$ $47^{\circ} 33^{4}$.
fan. 13, 17189, the firft Circumjovial immerged at $10^{\text {h }} 35^{\circ}$ p.m.

Fan. 17, the moon fouth'd at $5^{h} 52^{\prime} 1^{\prime \prime}$. On the 19 , at $7^{\text {bh }}$ $33^{\prime} \cdot 1^{\prime \prime}$. On the 22 , at $10^{\text {h }} 21^{\prime} 40^{\prime \prime} p$. m.
Feb. 16, the moon fouth'd at $6^{h} 15^{\prime} 15^{\prime \prime}$. On the 19, at $8^{\text {h }}$ $59^{\circ} 40^{\prime \prime}$. On the 2 I , at $10^{\text {h }} 54^{\prime} 30^{\prime \prime} \mathrm{p} . \mathrm{m}$.
Dec. 11,1719 , a very unufual meteor was obferved in the evening.
Fan. 8, 1719-20, Mr. Robie fays there was an earthquake.
Nov. 24, ${ }^{1720}$, Mr. Robie oblerved a ftreaming from the northern horizon; as Dr. Derbsm had done on Nov. 22, before.

Dec. 10,1720 , about $8^{\text {tr }}$ p.m. Mr. Robie firft faw the light that ftrikes up towards the Pleiades; and on fan. 6 , following, he found it was increafed, and almoft reach'd to the Pleiades. And Dec. $7,192 \mathrm{I}$, he obferved the fame; and on the 25 th he hath given this figure of it ; bo (Fig. 5. Plate VIII.) reprefents the part next the horizon; V the point towar?s the spleiades.

This glade of light is the fame that Dr. Cbildrey mentions in his $\operatorname{Briton.}$ Bacon. under the name of Semita lumino a a; and which Dr. Derbam onterved, and gave a figure of in 'Pbith. Tranf. No 305.

Mr. Robie made the following obfervations of the eclipfe of the moon flune 28,1721 .

About 2 o'clock in the morning he reviewed the moon with his 8 foot telefcope, and the was untouch'd.
Correct time.

There remained a light on the weftern fide of the moon for fome time.

About $3^{h} 50^{\prime}$ in the morning the mon was entirely hid by the haze, and the coming on of day-light, that nothing could be feen of her; tho' from the immerfion till now fhe was vifible.
The obfervations of Mr. Robie made on the folar eclipfe Nov. 27,1722 , are as follows.

27 O. He faw the fun rife eclipfed about 4 digits or his fupreme vertex; the greateft part of the fhadow lay to the S. W.
Then we could oblerve no more till
30 - The lun began to appear; and 6 digits, or thereatouts were eclipted.
55. 15 The fun was eclipfed 4 dig. $\frac{3}{4}$ nearly, and then the fun's diameter was to the moon's, as 1000 to 972.

- $r_{5} 4$ dig. and $\frac{x}{2}$ were hid nearly; and the fun's diamerer was to the moon's, as 1000 to 975 .
19 4s A little fpot on the fun emiel ged.
2545 He law the moon go off the fun; as did alfo Mr. Wanforth at the lame time; and Mr. Appieton at

The Defcription of a nere Quadrant for taking Altitude vilthout a Horizon, either at Sea or Land, invented by Mr. John Elton. Phil. Tranf. $\mathbb{N}^{\circ} 433 \cdot$ P. 273.

THI S inftrument (Fig. 6. Plate VIII.) contain 4 principal parts, viz. a frame, an index, a label, and a shield; and thefe confifl of feveral parts.

The frame ABCDEF has two parts; one a graduated arch DE of 30 degrees; each degree being fubdivided into 6 equal parts; the other a chord $B C$ of an arch of 60°, divided into 2 equal parts (at the extremities and in the midalle of which are 3 holes or ftops $a b c$. For the label) together making 90°, or : a quadrant. The index GH turns upon the centre of the frame the whole compafs of the arch, and has 3 parts; viz. a Nonius plate n, an eye-vane v, and a tube t. The Nonius plate nioves with the index, and fubdivides each of the fmall divifions off the arch into 10 equal parts or minutes: The eje-vane is to look thro' in forward obfervations. The tube is to fhew, when the index is horizontal. The label IK moves upon the centre: of the frame the whole compafs of the chord of the arch of 60 degrees, having 3 fixed fations thereon, at 30,60 and 90°, and contains 2 principal parts, viz. a lens l, and a lanthorm whofe ftool is 0 . The lens is to form the tin's image upon the thield. The lanthorn is neceffary in noeturnal obfervations. The fhield or ray-plate dfgg is fixed in the centre of the frame, and confifts of 3 parts, viz. an azimuth tube z, an horiznatal tube b, and an axis x, or in backward obfervations a ray-plate: The hole in the fhield is to receive the fun's image. The azimuth tube is to direct the plane of the inftrument perpendicular. The horizontal tube is to thew when the label is level. The axis is to cut the object in forward ubfervations.

A rule for cither backward or forward oblervations.
If the altitude do not exceed 30°, the label muft be placed at the flation on the radius or longet limb of the quadrant; if the altitude be between 30 and 60°, at the middle ftation; and if the altitude exceed 60°, at the uppermof flation.

To take the fun's alritude by a backward obfervation.
This is done without ufing the fight vane, or horizontal tube on the fhield. Hold the quadrant with both hands in fuch a manner, as is aptell for keeping it fleady, the back of the arch being turned towards the fin. When the bubble of the azimuth tube is brought under the hole in the Thicld, caufe the fin's image to fall on the hole in the thield; fo that it may reft in
the centre of the fun's image: The inflant the azimuth tube and fun's image are thus regulated, fee if the bubble in the horizontal tube on the index (which till then is not regarded) leave the open end of the tube, or ftop any where clear of the ends of the tube: If thefe happen at the fame time, the altitude is then truly taken: But if the bubble had remained in the inclofed end of the tube, when the azimuth bubble and the fun's image were regulated, the index muft have been flid up; and if is tarried in the open end, mov'd down, till the horizontal bubble on the index quir the open end of the tube, or ftop between the ends as was before obferved; and then is the quadrant fet. In continuing the obfervation for a meridian altitude, the quadrant being fer, as the fun rifes, the horizontal bubble on the index will not quit the open end of the tube, or ftop between the ends, but hang there, or leave it after the azimuth bubble and the fun's image have been regulated; which will require the index to be continually mov'd down, in order to keep the quadrant fet. When the fun is up, or on the meridian, the quadrant will remain fet for fome time; and on the fun's falling, the horizontal bubble will have a reverfe tendency, inclining or running wholly to the inclofed end of the tube.
To take the alfitude of the fun or fars by a forward obfervation.
In this method, the lens and tube on the index are difregarded: Hold the quadrant vertical, and looking thro' the eye-vane, direct the axis, or upper edge of the fhield to the fun or ftar; if the axis cut the fun or. ftar at the fame inftant that the buhble in the horizontal tube on the Shield quit the open end, the altitude is then truly taken, and the quadrant fet. But if it fhould leave the open end of the tube before the axis or upper edge of the flield cut the fun or ftar, then the eye-vane (or which is the fame, the index) muft be flid down:; and if it remain at the open end, or quit it when the axis is above the fun or ftar, moved up till the quadrant be fet. In contimuing the obfervation for a meridian altitude, as the fun or flar riles, the bubble in the horizontal tube will always quit the open end of the tube before, the axis cut the object : So that to keep the quadrant fet, the eje vane muft on every fuch alteration, be conftantly mov'd down; while the fun or ftar is in the meridian, the quadrant will rematn fet; and when the fun or ftar falls, the bubble will act contrary to what it did in the rifing, refting wholly in the open end of the tube.

To take the fun's altitude with the horizon.

Turn the back of the arch towards the fun, and caufe the fun's image to fall on the hole in the fhield, at the fame time looking thro' the eye-vane, cut the horizon with the axis.
N. B. In taking the altitude of the ftars, a fmall light mult be fixed in the lanthorn; the lefs the better. It will be beft in forward obfervations of the fun, to take the altitude of the upper limb, allowing for the femi-diameter; and when the fun is very clear, take his altitude by a backward obfervation, the forward method being chiefly intended for nocturnal obfervations, and when the fun is too much obfcured to give any thadow or image.

There was at the fame time laid before the Society an extract made by Mr. Elion of obfervations of the latitude from the journal of Captain Walter Hoxton, Commander of the fhip Baltimore from the river of Thbames to Maryland on the continent of America, both with Davis's, or the common, quadrant with the horizon, and with Mr. Elton's, a new invented quadrant, without the horizon, A. D. 1730.

From this extract it is obfervable, that in moderate weather the difference of the obfervations, made with the two forts of quadrants; was commonly no more than I^{\prime}; with ftrong gales, a large fea, and in fair weather 5^{\prime}; in hard fqualls, the fea running high σ^{\prime}; in eafy gales 9^{\prime}; in fair weather and a large fwell 16^{\prime}; once in fmooth water $1 \sigma^{\prime}$; and with frefh gales the greateft difference of all was $2 \mathbf{I}^{\prime}$; and this difference was conftantly found to give the latitude more northerly by Mr. Elton's quadrant than by Mr. Davis's; as in this latt mentioned inftance the latitude appears to be $35^{\circ} 39^{\circ} \mathrm{N}$. by 'Davis's,' when Mr. Elton's makes it 36° N.

There is a note added by Captain Hoxton at the end of this journal, viz. that the difference at different times between Davis's and Elton's quadrants is occafioned by fhifring the dhade-vane of Davis's.

To this journal were annex'd fome obfervations of the latitude by the fixed ftars in the forefaid voyage by Mr. Eilton's quadrant without ufing the horizon.

Thefe obfervations are generally taken from two ftars, and the latitude calculated from each oblervation: And fo they are found to agree commonly within 4 or 5^{\prime}. The greatelt difference arofe once to $1^{\prime} 3^{\prime}$. When by an obervation taken by Syrius, the latitude was found to be

$42^{\circ} \quad 46^{\prime}$	By Procyon $42^{\circ}{ }^{5} 6^{\prime} \mathrm{N}$.
Courfe inter.	
Obf. S. S. W S. $3^{\prime} \frac{\pi}{2} 0^{\circ} 3^{\prime}$	Where the difference is $\mathrm{I}_{3}^{\prime} \mathrm{N}$.
$42^{\circ} 43^{\prime}$	

Captain Hoxton, when at anchor in Che ea-Peak bay, found he latitude $39^{\circ} 29^{\prime} \mathrm{N}$. Off Celdar point in Potuxon river $8^{\circ} 7^{\prime}$ N. Off Cape Henry $37^{\circ} 6^{\prime} \mathrm{N}$. And in a letter to 1r. Eaton he declares, 'that he obferv'd with his quadrant both by the fun and ftars, in all the various forts of weather he met with in his voyage to and from Maryland, without regarding the horizon with as great exactnefs, as with Davis's quadrant, when the fun and horizon were clear.'
There was likewife put into the hands of the publifher, nother letier from one Mr. Fobn Walton to Mr. Elton, conaining fome obfervations of the latitude in Legborn road, nd feveral of the ports of Spain, which were found, after epeated experiments, exactly to agree with the known atitudes of thofe places: Mr. Walton adds, that he made everal obfervations in his paffage home, in hard gales, and great fea, and when it was fo hazy, that the common luadrant was of no ufe, for want of a horizon.
A remakable cafe of a Hydrops Ovarii, by Mr. Jobn Belcrieer Pbijl. Tranf. N ${ }^{\circ}{ }^{2} 23 \cdot$ P. 279.
[N 1725, the wife of one Mr: Nerwberry complained of a pain in her left fide internally near her groin, which lenfibly ncreafed; and perceiving a fwelling in that part, the at firt hought herfelf with child ; but having other fymptoms, not ery common with women in fuch a cafe, the fent for a ohyfician, who immediately difcovered it to be hydropi:al; and after following his prefcriptions for fome time, and inding little or no benefit thereby, flie fent for another, and fo ir a third and fourth; and affer between two and three years ruitlefs tryal of proper medicines preferibed by the phyfictane, he growing now very big and uneafy with her burden was adifed to be rapp'd, to which the accordingly fubmitted: And in May 1728 , fent for Mr. Cbefelden, who took from her beween fiour and five gallons of water; but in a weck or ten lays after the operation, She perceived herfelf to fill again, in which fate the continued to the firf of Fuly following, when Mr.

Mr. Cbefelden tapped her again, and took from her about the fame quantity of water as before; and in this manner fhe continued to fill, and to be tapped every third or fourth week, from the 6th of May 1728, to the g^{2} d of March 1731-2. when fhe died, in the 33 d year of her age.

During the lait 37 times of her tapping, Mr. Belchier con ftantly attended the patient with Mr. Cbefelder; when fhe always (till the two laft times) appeared very brifk and lively, the whole time of the water's running from her; and was not in the leaft fick or faint, after the difcharge of the watert as is ufual ; and tho the was a very thin emaciated woman, She would frequently walk two or three miles the day before the operation; and mof commonly go abroad the third day after it.

The quantity of water taken from her each time of tapping; was between 4 and 5 gallons; and during the whole 37 times the was tapped, there never was above a quart, or two quarts at mof, difference in the quantity, till the two laft times, at each of which the quantity did not exceed two gal lons: But in che intervals of thefe two laft operations the was troubled with reachings to vomit, which burft open the orifice twice where fhe was tapp'd, and at each time fhe dif. charged about fix quarts. The quantity of water, which was taken from her each time, was always meafured; and upon computation, the whole amounts to near 250 gallons. The water that was taken from her the two laft times of tapping, was much more viccid than the former.

At times the frequently complained of a violent pain on her right fide, and a heavy aching pain in the pelvis. She had likewife a prolapfus uteri; and fome time before her death She could not expel her foces but with great difficuly and pain, and at the fame time flie laboured under an incontinency of urine.

March 6. 1731-2. Mr. Belchier opened her in the prefence of her phyfician; when he found the whole vifcera, from the diaphragm to the $O \iint a$ pubis, cover'd with a thick gelatinous fobfance, which feem'd to be membranous, and which at its firt appearance, he rork for the omentum in a putrefied ftate; but after a further examination he found it to be only the more vifcid parts of the extravafated fluid, which could not be dife charged by the operation: Afcer removing this, he found feveral portions of a hard firrhous fubftance, arifing from the bottom of the fomach; one large portion of which was in
erted into that part of the colon, near the right kidney, and n appearance refembled the pancreatic gland ; another portion which was cylindrical, and about $\frac{2}{3}$ of an inch in diameter, oaffed ftraight over the inteftines, adhering ftrongly to that part of the oolon, which lies under the ftomach, and was inerted into the rectum, in the pelvis; another portion of this. ubftance paffed directly over the inteftines, to the pelvis; bur bout the middle of the abdomen, it fent out two fmaller porions; the one was inferted into the mefentery; the other reAecting back was inferted into the colon, on the left fide near he fomach. As fon as he cut into one of thefe portions, he difcovered it to be a part of the omentum twifted up, and contained in a very thick capfular membrance. The diaphragm was forced up fo far by the contents of the abdomen, that the cavity of the thoraix was decreafed to near $\frac{\pi}{3}$. The liver was much larger than in a natural flate, and of one entire fubftance; and not divided into lobes, the whole convex furface adhering firmly to the diaphragm. The ftomach, as to its cavity, was very fmall; but its coats were increafed to fix times their matural thicknefs, (as were likewife all the coats of the intefines and mefentery) and very much inflamed, Two thirds of the ftomach adhered to that parts of the diaphragm, which did not cover the liver; and the other part adhered to the concave furface of the liver, as did likewife the duodenum, whofe cavity was very large. Below the duodenum, the colon adhered to the lower part of the concave furface of the liver; fo that the whole liver was contained in a kind of purfe, compofed of the diaphragm, fomach, duodenum, and colon. The cocum, colon, and rectum were much larger than in a natural ftate; and adhered fo very ftoongly to the parts over which they paffed, that it was with much difficulty Mr. Belchier could 1cparate them. The fpleen was not one fouth of its natural fize, and one half of its external furface was entirely cartilaginous. The pancreas was fmaller than ufual, as were likewile the kidneys, ureters and bladder; and in the pelvis. of each kidney, there were fimall fabulous concretions. The left ovarium was diftended to fo large a fize, as to fill the whole cavity of the polvis up to the os pubis; its furface was eartilaginous, like that of the fpleen, and in it were contained a grear number of Fiydatides of different fizes, whereas the right ovary was no ways difeafed in the leaft. The difficulty and pain complained of in the expulfion of the faces, naturally arife from the peffures on the difeafed ovarium, at the fame
fame time that its increafed bulk, by comprefing the intefin num rectum impeded the egrefs of the foces, and brought on the inflammation of the inteftines which we obferv'd.

The prolapfus uteri, and the incapacity of the bladder's retaining a proper quantity of urine, were likewife occafioned by the preflure of this difeafed ovarium upon thofe parts. But what feems moft material in this cate, is the vifcid matter found in the cavity of the abdomen; as the waters were originally incyfted in the ovary, it was properly extravafated from the cyftis, into the abdomen in the two laft operations; by which, as well the quantity drawn off as the cuftomary relief, were very much diminifhed; in lieu of which she flimulus, from fuch a fluid, might reafonablys bring on the vomiting obferved from thattime.

Quer. Therefore, if fuch a vomiting enfuing the operation is not a fatal fymptom?

Qucr. If any method can be found to prevent fuch extravafations?
The relations of this gentlewoman are of opinion, that her: difeafe was occafioned by pulling off her cloaths, when the was very hot, to go into a bathing-tub of water to cool her; when finding the water exceffive cold, fhe put only her legss in, the other part of her body being out of the water, and naked at the fame time; which happened a few weeks before the perceived the fwelling and pain in her pelvis; and probably this might be the caufe. As the conftriction of the lower parts by the cold water might, in a great meafure, impede the fluids circulating thro' the lower parts, and the blood being at the fame time rarified and expanded by the hear, might therefore burft thro' the more tender lymphatics, and produce the extravalation.
Farther Eixperiments concerning Electricity ; by Mr. Stephen Gray. Phil. Tranf. No $423 \cdot$ p. 285.

IN Spil. Tranf. N ${ }^{\circ}$ 422. p. 227 , Mr. Gray gave an account of experiments, which thew that water will be attracted by electric bodies, and that it may have an electric virtue communicated to it, fo as to attract folid bodies; and fince that time he has been upon another enquiry; namely, whether there might not be a way found to make this property of electrical atrraction more permanent in bodies? How far he has fucceeded in this attempt will. appear by the experiments on the feveral bodies mentioned in the following
 catalogue; and as they were all of them prepared in the fame manner, except $N^{\circ} 18$ and 19 , which fhall be defcribed afterwards, a general defcription of the method of preparing and preferving them in a flate of attraction, may fuffice.

The bodies, on which the experiments were made, were rofin, both black and white, ftone-pitch, fhell or gum-lac, bees-wax and fulphur. He procured three iron ladles of feveral fizes, in which he melted thefe fubftances, making ufe of that which he thought moft convenient for the quantity he defign'd to melt. When any of thefe bodies were melted, they were taken off the fire, and fer by in the ladle to cool and harden; then it was returned to the fire, where it remained till it was melted about the bottom and fides of the ladle; fo as to be moveable, and by inverting the ladle, it might be taken out, having the form of the fection of a fphere nearly; the convex furface, as alfo the plain one, being naturally (fo to feeak) pulifh'd, excepting the fulphur, which cools without retaining its polifh, except when caft in glafs-veffels; as fhall be fhewn anon. He now proceeds to the experiments and oblervations made on thofe eleCtric bodies.

When any of them were taken out of the ladle, and their convex furface hardened, they would not at firft attract, till the heat were abated, or till they came to a certain degree of warmth; and then there was a fmall attraction. He effimated the warmth to be nearly that of a hen's egg, when juft laid: The atraction increafing in fuch a manner, as when cold, to attraft at leaft so imes farther than at firfs.

The manner of preferving them in a fate of attraction was, by wrapping them up in any thing that would keep them from the external air; as at firf for the fmaller bodies he made ufe of white paper, but for the larger ones white flannel; Bur afterwards he found that black worted fockings would do as well. Being thus cloath'd, they were put ir.to a large firbox, there to remain till he had occafion to make ule of them.

The cylinder of fulphur $\mathrm{N}^{\circ} 18$ was made by melting the fulphur, and pouring it into a cylindric glafs vefel, which firf had been heared to prevent irs cracking. When the fulphur was hardened, it was fomewhat lefs than the glafs; fo that by inverung the glats, the fulphur came eafily out, and had a polla'd furface almolt as mooth as the glats in which it was calt. The large cone of fulphur $N^{0} 19$. was made after the fane manner; viz. by being catt in a large drinking glafs.

Vel. IX. $?$

He comes now to give an account of the obfervations made on the feveral bodies, mentioned in the catalogue; but firft he gives a delcription of the catalogue. The firtt column containsthe number, which in a fmall piece of paper is fixed on each of the feveral bodies; the name of which is given in the fecond column, whether they be fimple or compound fubftances. The dhird column thews what weight they were of when melted, in ounces and drachms Averdupois. In the fourth column you have the days of the month, when the body was melted, and received its form; and confequently, when it firft began to attract.

For 30 days he continued to obferve every one of thefe bodies, and found that at the end of the faid time they attracted as vigoroufly as on the firft or fecond day. By the times, mentioned in the catalogue, being fubftracted from any time after, will be fhewn how long any of the bodies have continued their attractive virtue; by which it will appear, that fome of them have not lof their attraction for more than four months: So that we have fome reafon to believe, that we have now difcover'd that there is a perpetual attractive power in all electric bodies, without exciting thems either by rubbing; heating, $\mathcal{E} c$. or any other attrition. But this will farther appear by the account Mr. Gray is going to) give of the two laft bodies, mentioned in the catalogue. The cone of fulphur $\mathrm{N}^{\circ} 19$. that was caft in a large drinking glafs, in about two hours after it was taken out of the glafs, attracted, as likewife did the glafs, but at a fmall diftance. Next day the fulphur was taken out of the glafs; and then it attracted ftrongly, but there was now no perceivable attraction of the glafs. Then the cone of fulphur was fet with its bafe upon the lid of the fir-box, wherein the other electric bodies lay, and the glais whelmed over it. He examined it every day after, and ftill found it to attract; but finding the place not fo convenient, having occafion to look into the box often, he removed it to the table that ftands between the twe windows of his chamber, where it has continued to this time and whenever the gtafs is taken off, attracts at near as great a diffance as the fulphur that is cloathed and fhut up in the box above mentioned. And tho' at firt there was no attrac tion, when the glafs was taken off; yet he now finds, that in fair weather the glafs alfo attracts, but not at fo great a dif. tance as the fulphur, which never fails to attract, let the wind or weather be never fo variable, as do all the other
bodies mentioned in the catalogue; only in wet weather the attractions are not made at fo great a diftance as in fair weather.
$\mathrm{N}^{\circ} 20$ is a cake of fulphur that was melted; and as the other bodies have taken the form of a convex fection of a fphere, this when cold, was laid with its flat fide downwards, on the fame table with the cone of fulphur: They were both placed fo near the wall, as to prevent the fun fhining on them. This was, as the catalogue hews, on the 18th of April; and, though it had no manner of cloathing or covering, has attracted ever fince. And in this, as in the other bodies, the attraction will be according to the weather; but when it attracts the ftrongeft, it is not more than the tenth part of what the cone of fulphur, that is covered, attracts.

The manner of obferving thefe attractions is beft performed by holding the attracting body in one hand, and a fine white thread tied to the end of a ftick, in the other; by this means far lefs degrees of attraction will be perceived, than by making ufe of leaf-brafs. When the threäd was held at the utmoft diftance, it may be attracted; the motion of it is at firft very flow, but ftill accelerating as it approaches nearer to the attracting body.

With a fmall hand air-pump he made experiments on feveral bodies, and finds that they will attract in vacuo, and that at very nearly the fame diftance as in pleno, provided that the experiment be made in the fame receiver, filled with air; as will appear by the following experiments.

There was taken a hollow glafs fphere, of fomewhat more than two inches and a half in diameter; being firf excited, it was fufpended by a loop of filk that went thro' a imall cork, with which the hole in the glafs ball, by which it was blown, was ftopped; and by the loop fufpended on a fmall hook, that was fcrew'd on to the brafs wire, that came thro' the collar of leather in the brafs plate, that covered the top of the open receiver, as in the experiment of letting fall the guinea and feather in vacuo: Then the ball was drawn up to the top of the receiver, and the top of the fmall fland, covered with paper, was laid on the wet leather on the plate of the pump, and leaf-brafs, laid on the fame: Then the air was exhaufted; when the glafs ball was let down to about an inch, or fomewhat more, towards the pieces of leaf-brafs, feveral of them were attracted by it. Then the air was let into the receiver, and the leaf-brafs laid on the ftand, the ball, being fufpended
as before, was let down to about the fame diftance from the leaf-brafs as before, and there feemed to be very lirtle difference in the atrraction.

He made the fame experiments with fulphur, fhell-lac, rofin, and white bees wax. Thefe would be attracted to the height of an inch and a half by eftimation; and when the experiment was made with the receiver full of air, there was very little, if any, difference in the height of the attraction, when there was the fame time fpent before the attraction was begun in pleno, as there was required to exbauft the receiver.

A catalogue of the feveral electric bodies mentioned above.
Names of the féveral bodies N°
1 Fine black rofin
2. Stone-pitch and black rofin

3 Fine rofin and bees-wax
4 Stone-pitch
5 Stone fulphur
6 Shell-lac.
7 Fine black rofin
8 Bees-wax and rofin
9 Rofin 4 parts and gum-lac I part
10 Sulphur
II Stone-pitch
12 Black rofin
13 White rofin
14 Gum-lac
${ }_{15}$ Gum-lac and black rofin equal parts
16 Gum-lac 4 parts, rofin 1 part
17 Sheil-lac and fine black rofin equal parts $=8 \quad 4$ Mar.
18 A cylinder of ftone fulphur
19 A large cone of itone fulphur
20 A cike of fulphur in 4 Apr .
An Experiment to flew that the Friction of the feveral Part in a compouid Engire may ve reduced to Calculation; drawing confequences from fome Experiments upon fimpl Machines in various Circumftances; by $\mathcal{D r}$. Defagulier Phil. Tranf: No 4.23. p. 292.

THE machine confifts of 3 pullies (2 upper and I lowe or a tackle of 3 pullies) whofe diameters are exactly : follows, 2 inches, I inch and $\frac{1}{2}$, I inch and $\frac{1}{4}$; and all the cer tre pin

tre-pins $\frac{x}{4}$ of an inch in diameter; the rope being $\frac{1}{10}$ of an inch

 in diameter.The weight is 18 pounds averdupois; and confequently, the power to keep it in equilibrio muft be $=6$ pound, and a very little more muft make the power raife the weight, if there were no friction : But here no lefs than 20 ounces are required, tho' the machine be as nicely made, as it can poffibly be.

Dr. Defaguliers has fhewn by experiment, that when the weight is unknown, $\frac{2}{3}$ of the power is the friction of a cylinder, whofe furface moves as faft as the power, and whofe gudgeons are equal in diameter to the cylinder. Now as the diameter of the firt pulley is 8 times bigger than its pin, its friction muft be $\frac{4 l 6}{8}$ or 8 ounces.

The 2d pulley, whofe furface moves as flow again as the power, and whofe pin is 6 times lefs in diameter, muft confequently have its friction only 5 ounces and $\frac{\pi}{2}$; becaufe 6402.
$\frac{2}{6}=50 z$. and $\frac{\pi}{3}$
The 3^{d} pulley, moving with $\frac{\pi}{3}$ of the velocity of the power, on a pin of $\frac{1}{4}$ of its diameter, has for its frision $4 \frac{2}{3}-0 z$ 。

$$
640 z .
$$

becaufe $\frac{3}{5}=4^{\frac{\pi}{3}}-o z$.
Now the fum of all thefe frictions being 19,6 ounces, which is the 5,4 part of the power $\sigma l b$. this addition does increate the friction in fuch manner, as to require a fuper-addition of the 5,4 part of that firlt addition ; and fo on in this feries, ounces ${ }_{17,62}+3,2+0,59, 母_{1} c_{\text {. }}=21,41$ ounces.
Then the fum of the frictions, upon account of bending the ropes (ton tedious to explain now, before he gives a full account in his intended theory of friction) deduced from the experiment, that a rope of $\frac{1}{10}$ inch in diameter flretch'd by $6 \mathrm{l} / \mathrm{b}$. requires 4,5 ounces to bend it round a cylinder of 1 inch --, amounts to $\mathrm{r}, 8+\mathrm{I}, \mathrm{I} ;+\mathrm{r}, \mathrm{r} 24=4,424$ ounces $;$ which, with the other friction, amounts to 25,834 ounces. But as the Dr. has fhewn in a former Tranfaikion, that when a rope, drawn by unequal weight, runs over a pulley, the preffure on the pin is diminifh'd, that diminifh'd preffure (found by calçulation to be near σ ounces). being taken from the above fum,
the friction remaining will be 19,834 ounces; and the experiment is juft 20 drachms.
$N . B$. Nothing was here allow'd for the weight added to bend the ropes, which would fill bring the experiment nearer the theory.

> A veay to Communicate the magnetical Viruse so Iron and Steel, without the belp of a Loadfones by M. Arnold Mascel. Phil. Tranf. No. 423. p. 294.

IN 1722. M. Marcel obferv'd that a lung heavy bar of iron being fet upright, and fome flings of iron, or a bit of ironwire, laid upon its upper end, thofe filings or bit of wire would ftick to another piece of bright pointed iron, and fuffer itfelf to be lifted up from the ftanding bar, even to the height of 5 inches.

In 1726 , making feveral more obfervations about the magnetical force, which he found in large pieces of iron, he made ufe of a large iron vice, about 90 lb . Weight, in which he fixed a fmall anvil of about $I_{2} l b$. Upon the bright furface of this anvil he laid the fteel, to which he would communicate the virtue, in a pofition north and fouth, which happen'd to be in a diagunal of the fquare furface of the anvil: Then he took a piece of iron an inch fquare, and 33 inches long, of about 8 lb . weight, having at one end the figure (reprefented Fig. 7. Pl. VIII.) brightly polifh'd at a, and taper at the other end : Then with one hand he held the piece of fteel faft down upon the anvil, and with the other he held the iron bar aforefaid perpendicular with it, with its point a upon the fteel, and preffing hard, he rubbed the fteel with the iron bar towards himfelf, from north to fouth, feveral ftrokes, always carrying the bar far enough round about to begin again at the north, to prevent the drawing back of the magnetical force: Having thus given 10 or 12 ftrokes, he turned the fteel upfide down, having it in the fame pofition as to north and fouth; and after rubbing and turning it, till he rubbed it about 400 times, it receiv'd by degrees more and more ftrength, and at laft had as much as if it had been touch'd by a ftrong load-ftone. The place where he began to rub was always that which pointed to the north, when the needle was hung, the end where he had ended the ftroke turning to the fouth. Sometimes it has happen'd, that in a.few ftrokes he gave the fteel its virtue; nay even in the very firf ftroke one may give a great deal to a fmall needle. This way M.

Marcel communicated the magnetical virtue to needles of feacompaffes, made of one piece of fteel (as Fig.8.) fo ftrongly, that one of the poles would take up $\frac{3}{4}$, and the other a whole ounce of iron, tho' thefe needles were anointed with lintfeed oil, which made a hard coat, to keep them from rufting; yet they retained the virtue : But in ftrenghthening this fort of needles, he rubbed by turns firft to the right, and then to the left fide.

The fame way he brought the virtue into the point of a knife; fo that it would fuftain I ounce and $\frac{3}{4}$:

He brought the faid virtue into 4 fmall pieces of fteel, each 1 inch long, and $\frac{1}{1} 2$ inch broad, as thin as the fpring of a watch. He joined thefe 4 pieces together, as into an artificial loaditone, weighing 18 grains Troy; and then it drew up and fuftained an iron nail, which weigh'd 144 grains Troy : This artificial loadftone was for 6 years tumbled about, and lay among iron and fteel, and in any pofition; and yet it rather acquired more than loft any of its virtue.

The magnetical virtue being thus communicated to iron or fteel, he farther oblerv'd, that that end where the ftroke was begun, would draw to the north, and where the ftroke ended to the fouth, in whatever fituation the fteel had been laid upon the anvil to give it the virtue. He took a piece of fteel, and rubbed it from one end to the middle; and then from the other end to the middle, and found it had 2 north poles, one at each end, and the middle a fouth pole.

Farther, beginning to rub from the mindle towards each end of another piece of fteel, he found it to have a fouth pole at each, end, and a north pole in the middle.

He put a pretry heavy compals-needle, after he had given it its virue into the fire, and made it red hot three times one after another, letting it grow cold every time: It loft fome virtue every heat, but at the 3^{d} heat it had a great deal till left, and making it for the ath time white hot, it loft it all.

When he cover'd the anvil with a piece of woollen cloth, and the end of the iron bar with a piece of hamoy leather, it gave no virtue to the fteel; then covering only the bar, and Peaving the anvil uncover'd, it communicated no virtue that way neither: But covering the anvil, and leaving the bar uncover'd, it communicated the full virtue.

He tried, wherher his vice had any fixed pole by flanding long in one pofition, but he found it had none.

He tried to do this with an anvil of about 30 lb weight, fixed in wood; but could not come up to the other proofs.

MEMOIRS of the

He believes if one took an iron bar of $;$ inches iquare, and to or more feet long, or feveral of them upon each otheri, and a fuitable piece or bar of iron to rub withal, and giving the underpart of the fanding bar the figure aforefaid, repretented by b (Fig. Ir.) it riight be brought to a vaft ftuength. N. B. the fteel for the needles is always of a fpring temper.
M. Marcel made 2 pieces of iroti, at one end $\frac{3}{4}$ of an inch, and fo taper to $\frac{3}{4}$ of an inch fquare each (the length not being mentioned') and fixed thofe 2 pieces of jron to a piecé of wood in the fhape of an armed loadtone, at about 8 inches one from the orher, applying to the under part of thefe irons, or legs, a piece of iron with a hook to it, as to an armed loadfone: He hung this armed piece of wood with each leg over an iron bar (at a diftance that fomiething might hang between themi) then he placed the piece of iron with the hook to it to the 2 feet; and he found it to draw very ftrongly; but his trial was but with Imall tools. He fuppofes if one did this in a larger proportion, it would have a confiderable effect.

Having ground fome loadfones with emmery, he faved the grindings, and mixing them with water ; fo that they might eafily be mov'd, he put them into a bottle to fink, placing a loadIt nne on each fide; one with its north, and the other with its fouth pole towards the bottle; and he found after the matter was fettled and dried, that it formed itfelf into a forr of loadftone, which had a moderate ftrength, and 2 regular poles.

Fig. 9. Pl. VIII. reprefents the end of the iron bar, with which the virtue is rubbed into fteel or iron.

Fig. 8. the needle of a fea-compafs.
Fig. 9. the figure of the point on one fide.
Fig. ro. the figure on the point of the other fide.
A (Fig. 11.) teprefents the needle of a compafs; $B B$ the end or edge of the bar, with which the needle is rubbed, beginning at CC , and proceeding to DD.
An uncommon Cafe of a difemper'd Skin; by Mr. John Machin. Phil. Trani. No 424 . p. 299.

ACountry labourer, living not far from Euffon. Ball in Suffolk, fhewed a boy (his fon) about 44 years of age, having a cuticular diftemper, of a different kind from any hitherto mentioned in the hiftories of difeafes.
His ikin (if it might be fo called) feemed rather like a dufhy colour'd thick cafe, exactiy fiting every part of his body, made of a rugged bark; or hide, with brittles in fome places; whitha
cafe, covering the whole body excepting the face, the palms of the hands, and the foles of the feet, caufed an appearance, as if thofe alone were naked, and the reft cloarhed: It did not bleed when cut or fcarified, being callous and infenfible. It was faid, that he fheds it once every year, about autumn, at which time it ufually grows to the thicknefs of 3 quarters of an inch, and then it is thruft of by a new fkin, which is coming up underneath.

It was not eafy to think of any fort of Ik in, or natural integument, that exactly refembled it: Some compared it to the bark of a tree; others thought it looked like feal-fkin; others like the hide of the elephant, or the fkin about the legs of the rhinoceros; and fome took it to refemble a large wart, or number of warts uniting and overfpreading the whole body. The briftly parts, which were chiefly about the belly and flanks, looked, and ruftled like the briftles, or quills of a hedge-hog, fhorn off within an inch of the fkin.

The boy's face was well featured, and of a good complexion, if not rather too ruddy; and the palms of his hands were not harder, or in worle condition than is ufual with workmen or labourers. His fize was proper for his age; his body and limbs ftrait, and excepting this deformity, well fhapen.

This rugged covering gave him no pain or uneafinefs, only that fometimes after hard work, it was apt to ftart and cleave, and caufe a bleeding. And notwithftanding the unufual difpofition of his humours to form fo frange an integument, his natural excretions were faid to be in the ordinary courfe and manner, without any thing remarkable attending them.

The father knew of no accident to account for this diftemper'd habit ; but faid, that his flkin was clear at his birth, as in other children, and continued fo for about 7 or 8 weeks; after which, without his being fick, it began to turn yellow, as if he had had the jaundice; from which by degrees it changed black; and in a little time it afterwards thicken'd, and grew into that flate it appeared in: That he was in health from his birth, and had no ficknefs at the feafon he fheds it. He farther faid, that his mother had received no fright (to his knowledgé) when the was with child; and that fhe bore him feveral children, none of which ever had this, or any other unufual diftemper or deformity upon them.

Fig. r. Plate IX. reprefents the back of the boy's hard.

MEMOIRS of the

Fig. 2. A portion of this extraordinary epidermis, which was probably a prolongation of the nervous papille, grown to about the fize of common twine packthread; and thefe ftanding as clofe together, as the briftles in a brufh, feemed, like them, to be all horn off even, and of the fame length, wiz. about $\frac{x^{2}}{2}$ an inch above the fkin.

Fig. 3. reprefents fome of thefe briftles, or ftumps, magnified; where it is vifible that fome of them are flat at top, others concave; fome pointed like a cone, and others very irregular.

Conjectures on the Nature of intermitting and reciprocating Springs ; by Mr. Jofeph Atwell. Phil. Tranf. $N^{\circ} 4244$ p. 301.

THE following conjectures on the fubject of intermitring and reciprocating fprings were fuggefted to Mr. Atwell by the phenomena of a particular fountain he had feen the wind ter before.

The fpring is fituated at one end of the town of Brixam neai Torbay in Devonfire, and known by the name of Laywell.

It is a long mile diftant from the fea, upon the north and north-eaft fide of a ridge of hills, lying between it and the fea and making a rurn or angle near this fpring. It is fituated in the fide of thofe hills, near the bottom, and feems to have itt courfe from the fouth-weft towards the north-eaft. There is conftant running ftream, which difcharges itfelf near one cornet into a bafon about 8 foot in length, and 4 foot and $\frac{x}{2}$ irt breadth, the outlet of which is at the fartheft end from the en trance of the ftream, about 3 foot wide, and of a fufficien height. This Mr. Atwell mentions, that a better judgmenn may be made of the perpendicular rife of the water in the bat fon, at the time of the flux, or increafe of the ftream. Upor she outfide of the bafon are 3 other fprings, which always run but with itreams fubject to a like regular increafe and decreaf with the former. It is true, they feem to be only branches o? the formef, or rather channels difcharging fome parts of thi conftantly running water, which could not empty itfelf all intc the bafon; and therefure when by means of the feafon, or weat ther, fiprings are large and high, upon the flux or increate on this fountain, feveral other little fprings are faid to break forth both in the bottom of the bafon, and without i:; which difap pear again upon the ebb or decreale of the fountain. All the
conitantly running ftreams put together, at the time Mr. At well Faw them, were, he thinks, more than fufficient to drive an over-fhot mill; and the ftream running into the bafon might bee about one half of the whole.

Mr. Atwell made a journey on purpofe to fee it, in company with a friend. When they came to the fountain, they were informed by a man, working juift by the bafon, that the fpring had flowed and ebbed about 20 times that morning; but had ceafed doing fo, about half an hour before they came. Mr. Atwell obferved the ftream running into the bafon, for more than an hour by his watch, without perceiving the leaft variation in it, or the leaft alteration in the height of the furface of the water in the bafon; which they could obferve very nicely, by means of a broad ftone laid in a fhelving pofition in the water. Thus difappointed they were obliged to go and take fome little reffefhment at an inn; after which they intended to come back and fend the reft of their time before they returned home. They were told in the town of $\mathcal{B r i x a m}$, that feveral had been difappointed in this manner; and the common people fuperftitioufly imputed it to fome influence, they fuppofe the prefence of tome people to have over the fountain.

Upon their return to it, the man, who was fill at work, told them it began to ebb and flow about half an hour after they were gone, and had done fo for 10 or x_{2} times. In lefs than a minute they faw the ftream coming into the bafon, and likewife the others on the outfide of the bafon, begin to increafe and to flow with great violence; upon which the furface of the water in the baton rofe an inch and a quarter perpendictularly, in near the ipace of 2 minutes: Immediately after which, the ftedam began to abate again to its ordinary courfe; and in near 2 minutes time the furface was funk down to its ufual height, at which it remained near 2 minutes more. Then it began to flow again as before; and in the fpace of 26 minutes it flowed and ebbed, s times: So that an increafe, decreafe, and paufe, taken together, were made in about 5 minutes, or a little more.

Mr. Atwell could oblerve by the mark upon the itones, that the furface of the water in the bafon had rilien before they were come, at leaft 3 quarters of an inch perpendicularly higher than when they faw it; and he thought that he could perceive fome very little abarement each turn, both in the height, and in the time of the rifing of the furface'; and confequently in the time of its finking: But the time of the paufe, or ftanding of the furface at its ufual height, or equable running of the ftream,

284

M EMOIRS of the
was lengthen'd; yet fo as to leave fome abatement in the time of the rifing, finking, and paufe, taken together. This is all Mr. Airwell's fhort time would allow him to obferve, feveral other things fhould have been taken notice of, as will appear from the hypothefis propofed to explain thefe phenomena.

But before Mr. Atrvell enters upon explaining that hypothefis, he remarks what difference or agreement is to be found between this account of the fountain; and another publifhed in Phil. Tranf. N․ 204. p.909,910, in 2 letters from Dr. Oliver. The Dr. places it a mile and a half from Brixan; Mr. Atroell fuppoles he means $\mathscr{B x i x a m} q u a y$, which is more than a mile off from the town. He gives the dimenfions of the bafon a little different from Mr. Atwell, making its furface 30 foot fquare; whereas Mr. Atreell makes it 36 . The Dr. fays, that it ebbs and flows often every hour, which is certainly falle, as appears; both by common report," and by Mr. Atwell's obfervation: It is true, when it once begins to flow and ebb, it continues to do fo for feveral times in an hour; but then there is after this again a certain face of time, perhaps, 2 hours or more, when it runs with an equable ftream, without any the feaft variation; and this is a particular circumftance not obferved in any fpring whatfoever. When the Dr, firf faw it, viz: in fuly 1693 , he fays that he judged the flux and reflux, as be calls them, to be per-formed in about 2 minutes: If he mean 2 minutes each, it agrees very well with Mr. Atweell's obfervations; but as the: former had neither glafs nor, mixure-watch with him, this ohfervation cannot be depended on. When the Dr. faw it again, viz. in Auguft the fame year, he judged it to flow, flower than before, which he explains by faying, that tho' it performed its fiux and reflux in litte more than a minute (which by the bye is quicker than before) yet it would fand at the low-water mark 2 or 3 minutes; which Mr. Atwoll fuppofes the Dre calls 月owing nower than before; becaufe the fpace of time between the end of the ebb and the beginning of the fucceeding flux was longer. If we fuppofe the Dr. to have made his obfervations fomewhat nearer the time, when the fountain was to ceafe ebbing and flowing: than Mr. Atwell made his, their obfervations will perhaps exaftly agree: The time of the fiux and reflux leing horter, the time of the paufe longer; but the whole time of the flux, reflux, and paufe, taken together, being fliorter by the Dr'saccount than by Mr. Atweell's. The former fays, that he found it by his watch to fow and ebb 16 times in an hour. The latter does not fuppofe that the Dr, made a
whole hour's obfervations, which muft have fhewn him a difference in the times of the reciprocations that he did not perceive : But having obferved that one reciprocation, or a flux, reflux, and paufe, took up about the fpace of 4 minutes, the Dr. thence computed, as Mr. Atweell imagines, that there would be 16 in an hour, prefuming that there was no alteration in the times. In this fenfe Mr. Atwell would underftand the Dr. when he adds, that he was informed, it fomerimes fow'd 20 times in an hour: For, according to the Dr's oblervation, it flow'd at the rate of 16 times in an hour; according to Mr. Alreell's obfervations, at the rate of 12 times in an hour; probably, before the latter's obfervations at a lefs rate, and after the former's at a greater : So that in the whole hour, according to the feveral rates taken together, it may flow and ebb about' 9 or 10 times, according to another account. Mr. Atwell received; but of this he can affert nothing certain, or upon his own obfervations. The Dr. adds that when the water in the bafon began to rife, he obferved a bubbling in the bottom of the balon, which ceafed when the water began to fink. This Mr. Atzevell did : not fee, becaufe the fprings were firsall and low, by means of a dry feafon; but it was confirmed to him by the report of eye-witneffes, as is before obferved.

Having thus compared the 2 accounts given of this fountain, Mr. Atwell comes now to his hypothefis for explaining the phenomena obferved by him; and he imagines them to be sicea. fioned by 2 ftreams, or fprings ; one of which paffing thro' $=$ caverns or natural refervoirs with fiphons, meets with the other fream in a third refervoir without a fiphon; where being joined, they come out of the earth together. "This complicated piece of machinery will be beft underftood by beginning with an explanation of the more fimple parts firft; in doing of which, an opportunity will offer of confidering fome other forts of fountains, which have already been obferved, or may hereafter be found to be in nature.

The petitio principiz, or fuppofition of refervoirs and fuphons in the bowels of the earth has been made by others : F. Regnoult in his Phil. Converfat. Vol. 2. Conv. G. P. 125, \&C. Eng. Edit. has mentioned it in general ; and Dr. Defagubiers in Phil. Tranf. No 384 . has atrempted to apply it to 2 cales in particular; as Defchales Tract. 17. de fontibus natural. Sce. Prop. 15. had done in 2 other cafes before him. Nor is it unnátural or hard to be gratitd. For, whoever has feen the Peak of Deroygire, the hilly parts of Wales, of other countries,

286 M EMOIRS of the

mult be fatisfied that they abound with caverns of feveral forts: Some of them dry, others ferving only for paffages, or channel's to ftreams, which run thro' them; and a ${ }^{\text {d }}$ dort collecting and holding water, till they are full. They muft likewife have obferv'd, that there are fometimes narrow paffages running between the rocks, which compofe the fides and go from one cavern to another: Such a paffage, of whatever Jhape or dimenfions, how crooked and winding foever in its courfe, if it be but tight, and run from the lower part of the cavern, firft upwards to a lefs height than that of the cavern, and then downwards below the mouth of the faid paffage, it will be a nasural fiphon.

A natural refervoir then, A BCD, (Fig. 4. Pl. IX.) with fuch a natural fiphon, MNP, may be fuppofed. Let a fream, which Mr. Atwell calls the feeding ftream, enter it, near the top at O; the faid cavern muft contain all the water, which comes in at O , till it be filled to the top of the fyphon at N : Then the fiphon beginning to play, and being fuppofed always to difcharge more water than comes in by the feeding ftream at O, will empty the cavern, till the water be funk in it below the mouth of the fiphon at M, when it muft ftop, till the cavern be filled, and the fiphon run again as before: If the water difcharged by fuch a fiphon, M P, be brought out of the earth by a channel PQ, the water will flow nut of the earth, and flop alternately, making an intermitting fountain at Q .

By this plain and ealy contrivance, feveral of the flowing and cbbing fprings, obferv'd by naturalifts, may probably be explaired; andeven a much greater variety of them than is hitherto xnown: For, if the feeding ftream at O hould arife only from the rains in winter, or from the melting of the fnow in fummer, the intermiting fountain would become a temporary lpring, as Dr. Plot calls fuch, fprings as are confined to a feafon: Or if the feeding fiream at O flould be conftant, but yet liable with other fprings to an increafe and decreafe arifing from the feafons, wearher, or other caufes, the conftruction of the fiphon would make a great alteration : For, when the fiphon is made in fuch manner that its difcharge (which is continually decreafing, as the furface of the water fubfides in the cavern) thall at any time be equal to the feeding ftream entering at O ; in fuch a cate the fiphon mult continually run, and yet not empry the cavern till the feeding fream at O be fufliciently diminith'd: But when the diameter of the fiphon at N , according to the height of the cavern, is to great; and the feeding ftream at O
fo fmall, that the fiphon can carry off (in the manner of waftepipe) all the water which comes in, and yet not run with a full ftream; the fiphon muft then continue to run without emptying the cavern, till the feeding ftream at O be fufficiently enlarged : So that by thefe different conftructions of the fiphon, there may be fome fountains, which thall flow conftantly in the winter, or a wet feafon, and intermit in the fummer, or in a dry feafon: And on the contrary, others, which flatl flow continually in the fummer, or a dry leafon, and intermit in the winter, or a wet feafon. There is a d variety, which may arife from the make of the fiphon, and will uccafion fuch itregularities, as admit of no certain explanation. This happens when the difcharge of the fiphon at the very laf is jult equal to the feeding ftream, and the cavity of the fiphon at N is large: For, in this cafe, the air-bubbles, made by the fall of the feeding ftream from O to the buttom of the cavern, will fometimes accidentally get into the mouth of the fiphon at M , and lodging at N , will fo choak it, as to render itte ram ning and fopping, as welf as the quantity of irs difharge, cntirely uncertain : So that this fort of fountains will admit of no farther confideration.

But before Mr. Atwell leaves the confideration of fountains explicable by one refervoir and fiphon; he thinks it may not be amifs to oblerve, that thofe, which intermit regularly, will have their flux always longer, and their paufe, or intermiffion, fhorter in winter and in wet weather, than in fummer or in I dry feafon; which is a confequence of this hy pothefis, by which it may be examined, whether it be applicable to any particular intermitting fountain, or no.

If the fingle refervoir and fiphon have another out let as R, (Fig.5.) firuated berween the bottom CD of the cavern, and the top of the fiphon N , we fhall have another kind of fountains. For, if the feeding frream at O be capable of being difcharged by the out-let at K , a fountain deriv'd from K wili continually run, whilft the feeding ftream can be difcharged that way'; and will increafe and decreate with any little aleration happening to the feeding ftream at O ; provided that the faid ftream do not grow too large for the out-let at R. But in that cafe the cavern muft be filled up to N , and the fiphon may begin to play ; which, together with the nut-let at R , may difcharge fo mlich as to make the furface of the water in the cavern fink below R ; and cunfequently, the fountain pro-

MEMOIRS of the

ceeding from R muttiop. If the difcharge of the fiphon be: fo confiderable ta to empty the cavern, then the fountain deriv'd from R will, after fome time, begin to run again, and increafe till the water rife in the cavern to N ; after which it will decreare, and at length ftop. But if the difcharge of the fiphon only keep the furface of the water below R, without emptying the cavern, then the fountain deriv'd from R fhall be dried up, fo long as the ftream at O continues increafed; $;$ and fhatl run again when the faid feeding ftream is leffen'd. Thus we may have a fpring which fhall run all fummer, and be dry all winter: Such a fpring will increafe juft before it begins to fail, i. e. whilt the water in the cavern is rifing to N; will be dised up fooner in a wet fummer, and break out latert in a wet winter, contrary to the nature of other fprings. Which particulars are worthy of obfervation in fuch fort of fpringss (of which it is faid we bave fome in Eingland) and will ferve to difcover, whether they are occafioned by this fort of mar chinery, or not.
If the fiphon MNP (Fig. 6.) of the refervoir ABCD, having no out-let at R, fhould difcharge itfelf into a fecond refervorr EFGH of a fmaller capacity, but furnifh'd with a fiphon STV, which difcharges the water more plentifully, than it comes in ; fountain, deriv'd from this fecond fiphon, STV, would fow and intermit; whill the firft fiphon $M \mathrm{NP}$, continued running, i.e. till the great refervoir A B CD houla' be emptied. After which it would entirely fop, till the faidfefervoir ABCD was filled again by the feeding ftream arO ; and then it would flow and intermit as before.
GYSuct a fort of compound fountain would be liable to all the vafiations of the former fountains, derived from a fingle referwört If we take the fits of flowing and intermitting of this for the flux of the former; ; and the long ftop in this, whilft the great teferwir is filing, for the paufe or intermiftion of the former. Befides which, we muft remark, that as the flux in the former fountains may be changed, and be made longer or horter; it in this the number of intermiffions, during one fit of fiowning and lintermitting, may not always be the fame; beexfife of the different capacities of the 2 refervoirs; and a difference sor change occafioned in the feeding ftream at O . For, If whilf the great refervoir A B C D is emptying, the little fefervoit EFG H thould empty ifelf 9 times, for inflance, ahid beshalfofull again, the fountain deriv'd from its, fiphon S TV muft have 9 intermiffions in one fit, and io in another

Royal Society.

alternately; whilf the feeding ftream at O remains the fame. But the feeding ftream at O being lefien'd, or enlarged, without making the fiphon MNP run continually, the number of intermiffions in each fit will be diminith'd or augmented aciordingly. But it is peculiar to this laft fort of fountains, that in each fit of flowing, and intermitting, the firft flux will be larger and longer than the $2 d$; and the 2 d than the $\hat{3} \mathrm{~d}$; but the firf intermiffion will be fhorter than the 2 d ; and the $2 d$ than the $3_{3} d$; becaufe the fiphon MNP running fafter at firft than at laft, the relervoir EFGH muft be a Shorter time in being filled, and a longer time in being emptied the firtt time than the $2 d$; the $2 d$ than the third, and io on. As to the whole time of the firlt flux and intermiffion, in comparifon of the whole time of the 2 d flux and intermiffion, it is a particular requiring fo many things to be taken into confideration for determining it in each cale, that Mr. Atseell waves it here, and contents himfelf with fhewing that it may be longer by an experiment that fhall prefently be made. A nother variety in this fort of fountains might be made by a ad feeding ftream Z, coming into the ad refervoir EFGH, but the bare mentioning of that will at prefent be fufficient.
If in the contrivance of a fingle refervoir, and fiphon, the ftream deriv'd from the fiphon thould fall into another refervoir IK KL (Fig. 7.) having no fiphon, but only a common, out-let X, and hould in this refervoir meet and join with another fream, conftantly running, a fountain deriv'd from the faid out-let X would be a reciprocating fpring, by which name Mr. Atwell calls thofe fprings which flow contantly, but with a ftream fubject to increafe and decreafe, to diftinguilh them from incermitting fprings, which flow and ftop alternately. And if the out-let X be too fmall to carry off all the water brought into the refervoir 1 KKL by the fiphon, over and above what is brought in by the conftant running Itream W; then the furface of the water in the faid refervoir I KKL ruuft continually rife, till the velocity of the fream, going out at X, be fufficiently increas'd to carry off the water coming in: Upon which the difcharge of the fiphon
bei and continually lefien'd, the faid furface will again fubfide, borh the increafe and decreafe in this reciprocating fountain will be gradual. Befides, if the refervoir $\mathbf{} \mathbf{K K K}$, or the channel, deriv'd from it, fhould have any leaks, crevices or other out-lets, the water will iffue thro them upon the rifing YOF.IX. 8

0

Let us now fuppofe fuch a refervoir IKK工 (Fig. 8.) with a conftant running ftream W, and an out-let X, to receive the water of a fiphon STV, coming thro' two refervoirs A BCD and EFGH, as before defcribed: A fountain deriv'd from X in this cafe, would be an intermitting reciprocating fpring, whofe ftream would reciprocate; but whofe reciprocations would fometimes ftop, and have fits of intermiffion.

Such, in all probability, is the fountain call'd Lajzeell, before defcribed, whofe phenomena feem capable of being accounted for by fuch a contrivance. And for the betrer difcovery of the nature of this fountain, whether it be owing to fuch a piece of natural machinery, or otherwife, it would be proper to obferve the length of time of each increafe, decreafe, and paufe in every reciprocation, together with the namber of reciprocations in every reciprocating fit; and likewife the length of the intermiffions of the faid fits. Thefe obfervations fhould be continued for fome time, both in a fettled feafon, when the feeding ftream at O cannot change, and in variety of feafons, when the faid ftream may be alter'd.

Mr. Atwell concludes, by prefenting to view an artificial fountain of this kind, which, being very eaflly made, mayp be buried in the bottom or nlope of a terrals, where a conftant flream of water can be brought; which will furnifh us with a new. fort of water-works in gardens. The two refervirs ABCD, EFGH (Fig. 8.) with their fiphons MNP, STV, and the third relervoir IKKL, with its out-let X, are included in a box YYYY; into this box at λ enters a funnel $\Gamma \lambda \Gamma$, divided within the box into two pipes, viz: $\lambda 0$, which ferves for a feeding frean to the grear refervoir and λW, which ferves for a conftant ftream to the third refervoir. A ftrean of water, being let into the funnel $\Gamma \lambda \Gamma$; will difcharge itfelf like fuch an intermiting reciprocating fountain at X, where there is a bafon $\mathrm{Y} Z \mathrm{Z} Z$ without the box to receive it, with an out-let a, and a diagonal gage $Z X$, to mark the rife and fall of the water in the baion.

Eclippes of Jupiter's Satellites obferv'd at Pekin in 1730 , ${ }_{1731}$; by F. Koegler ${ }^{2}$ and Pereira. Phil. Tranf. $\mathrm{N}^{\circ}{ }_{424.0}$ p. 316.

Emerfions.

Nov. 17302516 ร 3° Dec. $\quad 2 \quad 18$ 2? 0 ; dubious

Dect

D. H. M. S.
 Dec. $1730.20 \quad 12 \quad 49 \quad 45$
 $27 \quad 15 \quad 21 \quad 5$
 $\begin{array}{llrrrr}\text { fan. } 173 \text { I. } & \left.\begin{array}{rrrr}3 & 17 & 49 & 50 \\ & 14 & 9 & 30 \\ & 45\end{array}\right]\end{array}$
 $\begin{array}{lllll}28 & 14 & 37 & 30\end{array}$
 Felf. $\quad 41710$
 158 - 59

tan … Emerfions.

$$
\begin{array}{lllll}
\text { Mar. } 173 \times 19 & 11 & 29 & 20 \\
\text { Apr. } & 13 & 8 & 35 & \\
& 20 & 11 & 16
\end{array}
$$

Satellite III.

Satellite IV.
Immerfion Dec. 1730.

```
20\quad18\quad50 45
    6,12 38 12
        17 6 45
23 10 54
31 6 between 30' and 35
    10.43 40
```

An Occultation of Mars ty the Moon, togetber with O_{c} cultations of the Pleiades, and fome otber fixed Stars, obferv'd at Pekin in 1731. Phil. Tranf. No 424. p. 318. Iranfated from the Latin.
NOV. 14, 1731, about 4^{h} p.m. the moon covered Mars:
The immerfion could not be obferv'd, by reafon of the brightnefs of the day; yet the emerfion was obferv'd at $4^{\text {n }} 54^{\prime}$ near Furnerius.
fan. 17, 1731, a tranfit of the moon over the pleiades was obterv'd as follows-
H. ${ }_{\mathrm{M}}^{\mathrm{M}} . \mathrm{m}$.
10. 9.40 Electra immerged in a right line paffing thro 'Plato and Eudoxus.
103250 Merope immerged in a right line thro' Coper nicus and Mefala.

Electra emerged in a right line shro Thaletes and Eudoxus.
112352 The preceeding Lucida Pleiadum (atriple fmall ftar) immerged in a right line thro Eratofibenes and S. Cyrillus.
11 $26 \quad 5$ Lucida Pleiadum or Alcyone immerged in a right line thro' Copernicus and S. Catbarina.
II 47 . 32 Merope emerged in a right line thro' Taruntius and S. Theophilus.

The brighter of the fmall ftars to the fouth of Atlas immerged in a right line thro' Bullialdus and Cenforinus.
121212 Atlas immerged in a right line thro' Copernicus and $\mathcal{F}_{\text {fuius }}$ Cefar.
$12 \quad 13 \quad 57$ Alcyone emerged in a right line paffing thro? the eaftern edge of P Poffidonius and Menelaus.
$1225 \quad 3 \quad$ Pleione immerged in a right line thro' Copernicus and Ptolomaus.
March 14, 173I. the moon hid x of Taurus; the immerfion was at $8^{\mathrm{h}} 4^{\mathrm{I}^{\prime}} 50^{\prime \prime} \mathrm{p} . \mathrm{m}$, in a right line paffing thro' Taruntius and Langrenus; and the emerfion at $9^{\text {b }} 5 \mathrm{I}^{\prime}$ a little to the fouth of Firmicus.

March 20 . the moon hid π of Leo: The immerfion was at 2 $11^{\text {h }} 13^{\prime} p$. m. in a righrline paffing thro' Mer \int ennus and Bullialdus; and the emerfion at $1_{2}{ }^{\text {h }} 3 a^{\prime}$ over againft Firmicus. Cenforinus p. m . in a right line paffing tho' Bullialdus and tho Taruntius and Menelaus.
A Lamar Eclipse obfero'd at Chamxo in the Province of Nankin as alpo at Cochinchina July zoo, I 730, No S. ty F. Simonelli and De Lima, Phi. Tranf, N°. 424 . p. 320. Translated from the Latin.

THis eclipfecould not be obferv'd at Pekin -by reafon of a thick fog; yet F. Simonelli obferv'd it at Cbamxo; a town in the province of Nankin, a little more than 4° of the equator to the eat of P pekin, $i . e .16$ or 17 minutes of time.
Phages
H. Time $p \cdot m$.

| The beginning of the eclipse at | 10 | 53 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| The end | 12 | 49 | 0 |

The greaten obfaration; Chinese dig and 10 '
Therefore the middle of the eclipfe at Cbamino
was at

II 5	52	0
11	36	0
0	16	0

F. \mathcal{D}_{e} Lima © observed the fame eclipfe at the palace of Cocbincbina.

Experiments to prove the Exiftence of a Fluid in the Nerves, togetber with Inferences from ibefe Experiments; by Dr. Alexander Stuart. Phil. Tranf: No 424. p. 324.

EXperiment in. Dr. Stuart fuipended a frog by the fores legs in a frame, leaving the inferior parts loofe; then the head being cut off with a pair of iciffars, he made a llight pufh perpendicularly downwards, upon the uppermoft exiremity of the final marrow in the upper vertebra, with the button end of the probe, filed fiat and fmooth for that purpofe; whereby all the inferior parts were inflantaneoully brought into the fulleft and ftrongeft contraction; and this he repeated feveral times on the fame frog, with equal fuccefs, intermitting a few feconds of time between the pulhes, which if repeated too quick, made the contrations much nlighter.

Exp. 2. With the fame fiat button end of the probe he pufh'd fightly towards the brain in the head, upon that part of the medulla obiongata, appearing in the occipital hole of the fcull; upon which the eyes were convulied. This he likewife repeated feveral times on the fame head, with the fame effect.

Exp. 3. He tied a piece of fine twine, or thread, parallel to the crural artery, vein and nerve of a dog; and he made a ligature on thefe, and on the parallel twine, above and below, at the diftance of about four inches; then he cut beyond the ligatures above and below, fo as to take out the vefuls and nerve, together with the parallel twine, in one bundle; and laying them on a board, both the arrery and vein contraged immediately, and were flortened to alminit one half of the natural length they bad in the body; to wit, to two inches and a half: Whereas the nerve remain'd uncontracted, at its natural length, and commenfurate to the parallel twine of four inches, as before it was cut out of the body, according to
Fig. 9. Plate IX. which reprefents the nerve and twine at their naturallength; namely, four inches: And
Fig. io. which reprefents the artery and vein contraced; 2 inches and $\frac{x}{2}$.
By which it appeats that the proportion of the blood-vefels in their compleateft contraction, to themielves in a ftare of extenfion, and to the nerves at theit conflant and naturat length, is neagly as 5 to 8 , or which is the fame thing, any given fection of a blood-veffel, cut out and left to itfelf, is

296

MEMOIRS of the

capable of contracting, fo as 10 lofe $\frac{3}{8}$ parts of its length. But tho' this experinent may fuffice for eftimating the elafticity of the blood-veffels in general; yet it is not to be doubted, but the degree of their ftrength and elafticity may differ a little more or lefs in animals of different fpecies, and individuals of the fame fpecies; nay even in the fame individual at different ftages of life: But thefe differences are not material to the prefent purpofe, which is only to thew, that the nerves are not elaftic; and that the bloodveffels are fo to a very confiderable degree.

The two firf experiments fhew, that the brain and nerves contribute to mufcular motion, and that to a very high degree: The third experiment makes it as plain, that what they contribute to mufcular motion cannot arife from, or be owing to elafticity, which they have notis What tremains, therefore, but to conclude, that the aftion of the nerves in mufcular motion is owing to the fluid they contain, by whatever name we may chufe to call it.

To fortify this conclufion, let us confider chat we can have no other evidence of the exiftence of that invifible fuid the air, and of its feveral qualities of elafticity and gravity, but what arifes from experiments and obfervations of its effects, which are fufficiently fatisfactory, and convince us of its exiftence, tho' the minute particles of its compofition fall under none of our fenfes. Therefore, in the fame manner, feeing thefe experiments put the elaticity and elaftic vibrations of the neryes quite out of the queftion, the Dr. thinks we may as farly conclude, that there is a fluid in the nerves, tho' invilible; as that there is fuch a fluid calld the air, tho it cannot be feen.

The D_{i}. only adds, that tha' we may call this nervousi fluid by any name, to which a proper, determined and fix'd idea is annex'd; yet he thinks the word (fpirits) was an unhappy choice, as it includes an idea either of fomething: like the fpirits of fermented liquors, or fome of the taline: volatile fpirits, as that of hartfiorn, E®c. or a fying vapourt or exhalation: All which being loole and indetermined, have ferv'd only to miflead the inguifitive, and amufe the ignorant. But the fource from which this fluid arifeth, to wit, the circulating blood; the veffels thro' which it is fecreted; the nerves in which it moves and is contained; the foft and almoft infipid tafte, and no finell obfervable in the brain and nerves, fuggeft no idea of fuch fpirits: And the fimple qualities of az pure and perfeetly defecated clementary water will betteft $+$
fuit all that our fenfes can difcover of it; and are indeed fufficient to folve all the phenomena of the animal œconomy, as far as they depend upon the nerves.
Obfervations of Latitude and Variation, taken on Board the Hartford, in ber Palfage from Java head to St. Helena in 1731-2; by Dr. Halley. Phil. Tranf. ${ }^{\circ}{ }^{0} 424$. p. 33 I.

0N Wednefday, Feb. 2. we took our departure from Favabead, allowing it to lie in the Lat. of $6^{\circ} 45^{\prime}$ fouth.

By a good amplitude made Latitude by account Merid. dift. from fava Head Longitude from ditto By a good azimuth made Latitude by good obfervation Merid. dift. from $\mathrm{Fa}_{\text {ara }}$ Head Longitude from ditto By a good amplitude Latitude per obfervation Merid. dift. from Java Head Longitude from ditto By a good azimath and amplitude Latitude per obfervation Merid. diftefrom Java Head Longitude from ditto by good amplitude Latitude per obfervation Merid. ditt. from Java Head Longitude from ditto By a good azimuth Latitude per oblervation ${ }^{\text {tr }}$ Merid. dit. from fora Head Longitude from litto By a good amplitude made Lacitude per oblervation Merid. dift. from Fava Head Longitude from ditto By a good amplitude made Latitude per obfervatiof
 Longitade from ditio By an azimuti and amplit made Latitade per oblervation
Meridian dilancerimm
Longitude
Vol. IX. 8

328 Variat. NWly. Feb. 7.
959 South. $\left.{ }_{45}^{43}\right\}$ WWert.
445 Variat. NWly. Feb. 13i
1343 South.
$\left.\begin{array}{ll}3 & 31 \\ 3 & 36\end{array}\right\}$ Weft.
452 Variat. NWly. Feb. 150
1518 South.
$\left.\begin{array}{ll}6 & 1 \\ 6 & 9\end{array}\right\}$ Weft.
4. 5 I Variat. NWly. Feb. 2r.

1812 South.
17.28
18
0 , Went.

68 Variat. NWly. Feb. 25.
1959 South.
$\left.\begin{array}{ccc}21 & 1 \\ 3 & 7 & 1\end{array}\right\}$ Went.
103 Variat. NWly. Feb. 29.
2100 South.
3028 Welt.
3212.5

1515 Variat. NWly. March 5:
23 I6 South.
37 18 3 Wef.
3858 Wef.
182 Variat. NWly. March \&:
25 II South.
4030 Weft.
42335
1900 Variat. NWly. Mar. 10.
26. 18 South.
$\left.\begin{array}{lll}42 & 4.2 \\ 4 & 15\end{array}\right\}$ Welt.
ए p
$\left.\begin{array}{cllll}\text { Marcb 13. } & \text { By a very goodamplitude } & 21 & 45 & \text { Variat. NWl } \\ & \text { Latitude per obfervation } & 27 & 23 & \text { South. } \\ & \text { Meridian diftance } & 44 & 14 \\ & \text { Longitude from fava } & 46 & 34\end{array}\right\}$ Weft.

Apr. 10. By a good azim. and amplit made 169 Variat. NW Latitude per obfervation 33 to South.
Meridian dillance from 'fava Head
Longitude from ditto
Apr. 13. By a very azim. and ampl.
Latitude per obfervation
Meridian diftance from Fava Head
Longitude from ditto
$\left.\begin{array}{l}77.24 \\ 8726\end{array}\right\}$ Wen.
1540 Variat. NW
375^{3} South.
if 21 ? Weit.
Apr. 4. By a very good azim. and ampl. 15 4.5 Variat. NV Latitude per obfervation

374 South.

Meridian diftance from Java Head $76 \quad 54\}$ Weft. Longitude from ditto
N. B. This day he judged Cape Bonne ESperance to bear N. by W. from him, diftance $2^{\circ} s 4^{\prime}$.

By a very good azimuth made $16: 4$ Variat. NWly, April. : 6. Latitude per observation
Meridian diftance from $\mathfrak{F a v a}$ Head
Ditto from Cape Bonne Esperance
Longitude from 7 Java Head
By a very good amplitude made
Latitude per observation
Meridian diftance from \mathfrak{F} ava Head $795 ?$
Ditto from Cape Bonne ESperance 136 Wet.
Longitude from Java Head 86 io
By a very good azimuth made
Latitude per observation
1440 Variant. NWly. Apr. 21 .
Meridian diftance from Java Head' 2 I
Ditto from Cape Borne E/perance
Longitude from $\mathcal{Y a v a ~ H e a d ~}^{2}$
By a good amplitude made
Latitude by observation.
Meridian ditance from Java Head
Ditto from Cape Bonne Esperance
Longitude from Java Head
By a good azimuth made
Latitude per observation
Meridian diftance from \mathcal{F} ava Head 8
Ditto from Cape Bonne Esperance
Longitude from Java Head
Latitude per obfervation
32.23 South.

Meridian diftance from Fava_{a} Head 9
Ditto from Cape Bonne Esperance
87 9 S
1239 Variat. NWly. Apr. 24.
27 I South.

Longitude from Java Head 9953
By an ample the night before came in 800 NWly.
At noon Barn. bore W. b. N. half N. diftance 4 miles,
An Eruption of Mount Vefuvius, extracted from the meteorelogical Diary at Naples; by Dr. Cyrillus. Phil. Trans. $\mathrm{N}^{\circ} 4^{24}$. P. 33^{6}.

THE thermometer made ufe of in this diary was made by Mr. Hauksbee, in which the freezing point is marked at $\sigma \delta$ degrees under the point extreme hot: But the Dr oblerves

$$
p p=
$$

that
that at Naples water will freeze, when this thermometer ftands at 55 degrees only: Which, according to him, feems to argue that there is fomething elie befides an intenfe degree of cold required for freezing water; that the air of Naples abounds in it more than that of I.ondon; and that this may, probably, be of a faline rature; becaufe when we turn water into ice by the help of fnow, it is neceffary to mix falt with it.
ther. winds
Mar. 8, $173040 \quad 0 \quad S_{3}$ Cloudy weather and a ftrong S, wind. Vefivius fent forth a: great fmoke and ftream of fire with hollow rumbling.
9 38 W The weather cloudy. The following night Vefuvius thunder'd, as it were, twice: In the day the windows trembled a little.

The weather rather clear: The fmoke leffen'd.
14 If $0 \mathrm{~N}_{2}$ A little rain in the night; in the morning fnow in the mountains; in the forenoon the fnew increafed again. Aftér 8 o'clock in the evening the fire arofe to a valt height, and threw huge ftones to almoft half the perpendicular height of the mounrain. Pumice-fiones red hot, of 2 or mưre ounces weight, were driven feveral miles like a fhower of hail, and frightned away the birds. In about an hour's time the height of the flame was fomewhat leffen'd; and flafhes of lightning were feveral times obferved thro' the middle of the thick fmoke.

1840 O SSWI Clear. The city of Naples was fprinkled over with fmall athes, like kitchen afhes, which were attracted by the loadftone.
> $19 \quad 42 \quad \mathrm{O} \quad \mathrm{W} \quad \mathrm{A}$ few thin clouds.
> $20 \quad 37$ O Almoft clear. Vefivius became en-

ObServations made on Board the Chatham Yatch, Aug. 30, 3^{1} and Sept. 1. 732 in purfuance of an Order of the Lords of the Admiralty for the trial of the Infrument for taking Angles; by Nr. Hadley. Phil. Tranf. $\mathrm{N}^{\circ} 425$. P. 3.4 I.
I N P bil. Tranf. No 420 . p. 147. Mr. Hadley communicated to the Royal Society the defription of a new inftrument for. taking angles, and produced a fpecimen of an inftrument made accordingly. Several of the Gentlemen to whom it was fhewn, as well then as at other times, entertained a favourable opinion of the probability of its ufefullnefs, particularly Dr. Halley and MreBradley not only expreffed their defire that trial hould be made of it at fea, but promis'd the favour of their company and affiftance on that occafion.

The inftrument produced at the Royal Society was made of wood, and was intended chiefly for taking altitudes of the fum, moon, and ftars from the vifible horizon, either forwards or backwards: Mr. Hadley, therefore, procur'd another to be made of brafs by Mr. Siffon, for taking the diftance of any kind of objects. It is fupported by a fingle ftem fcrew'd on to it on the under fide, the lower end of which may reft on the ground, to eafe the obferver of the weight of the inftrument. This ftem is affo made to lengthen or Shorten, by which means the inftrument is brought to the proper height for any obferver's eye, either ftanding or fitting. Inftead of a ball and focker, it has 2 circular arches fixed on its back, by which it is readily
fet to any pofition, which the fituation of the objects may require.
The commiffioners of the Admiralty having been pleafed to order the Cbatbam Yatch for the trial of the faid inftrument, and to give directions to Mr. Young, Mafter attendant at Cbatham, a Gentleman well fkilled in navigation, to be prefent at the trial, Mr. Hadley's 2 brothers and himfelf went on board accordingly Aug. 30, being favour'd with the company of Sir Robert Pye and Mr. Oid. Mr. Young met them at Sheerne/s the next day, and accompanied them down about 3 leagues below the Nore, near the fpile-fand, and was on board on Friday Sept. I. when they lay by there, and the feveral altitudes of the fun were taken as he approached the meridian from about 10 o'clock till noon.

The obfervations were, as follows.
Aug. 30. near midnight, Mr. Pradley ob? ferved the diftance of Lucida lyre from Cor aquile by the brafs-inftrument off Gravefend in $\} 41330$ ftill water.

The fame repeated was
341315
The error of the inftrument in that place is $23^{\prime \prime}$ to be fubftracted.
The diftance of thofe flars, according to Mr . $\}_{34}$ II 50
Which by the refraction is reduced to 341110
Aug. 31, about $10^{\text {ha }} 30^{\circ} \mathrm{Mr}$. Bradley did with the fame inftrument obferve the diftance of Capella from the norts pointer in the tack of the great bear; while they lay at anchor in the $491400-1$ mouth of the Medroay near Sbeernés, the wind blowing hard at N.E.

$$
\text { or } 49.1500
$$

Mr. Bradley and Mr. Hadley making a fmall difference in numbering the degrees of the angle markt by the index.
The error of the divifion of the inftrument there, is $\beta_{0}^{\prime \prime}$ to be added.

The diftance of thofe ftars, according to Mr . $\} 49$ in or lamflead is
 By the refraction reduced to $\quad 49$ 14.20
 Clouds coming up prevented the repeating this obfervation nor had they any opportunity of making any others of this kind.

lying at anchor in the mouth of The following altitudes were obferved by Mr. Bradley, ying at anchor in the mouth of
the Medzeay, Aug. 3t, in the afternon, the wind at N. E. a frefh gale by the wooden in-,
ftrument forwards. The watch by the mean of the obfervations appeared to be about 8
$45^{\prime \prime}$ toon flow; the vifible horizon being fuppofed $3^{\prime} 30$ deprefs'd below the true horizon
hy the height of the obferver's eye above the furface of the water, amounting to about 8 or 9
fect.

The following alritudes of the fun were obferved Sept. 1 , before noon, under fail from Sheerne/s towards the file-fand, with the tide of ebb: the wind blowing hard at N.E. by the wooden inftrument forward. The 2 d Jpeculum being remo ved by fome accident from its due pofition; to as to increarie the angles obferved about $1^{\circ} 3^{\prime}$ and $\frac{1}{2}$; as appeated by the firt obfervations of the afternoon of the fame day, made with the fame inftrument, in the fame manner, while they continued lying by near the fpile; and that degree and three minutes and a half are added to the errors of the divifions of the inftrument in the feventh column. While thefe obfervations were making, the yatch fteered at firft chiefly E. fometimes S. E. afterwards ftood to the N. E. towards the Swin. The time of the watch was regulated by fome of the later obfervations made when they were moft eaftward; and this was probably the caufe, why the firf altitudes, which were taken while they were more weftersy, fall fo much thort of the computations; the difference decreafing gradually, as they advanced towards the eaft.
Vยะ.IX. 8
Qq

The

The
The following altitudes of the fun were obferv＇d，lying by near the Spile Sept．y．before noon， with the wooden inftrument backward，the wind continuing to blow hard，as before，at N．E． The inftrument，when used for the back obfervation，was fo adjufted，as to allow for a dip of the

 putation．The watch now appeared to be $9^{\prime} 30^{\prime \prime}$ too flow．
Altitudes obferv＇d by Mr．Goon Hadley．
い．
岂 $1=800$ 苞 1080 8 Alt．of
Sun＇s ob f
－

；

Q． 9
The
Between
Between each of the five laft of thefe obfervations, the inde x of the inftrument was remov'd; fo as to make them entirely independent of one another; and from their near agreement among themfelves; and with good part of the preceeding, Mr. Hadley concludes the true height of the fun's centre above the real horizon at noon to be exactly enough $42^{\circ} 33^{\prime}$; his femidiameter being 16 minutes: From which and the fun's declination, namely $4^{\circ} 1^{\prime} ;$ the latitude of the place will be $51^{\circ} 28^{\prime}$; which is accordingly ufed in all the computations.
By the wooden inftrument forwards, the fecond fpeculum remaining difplac'd as in the morning;
the following altitudes of the fun were oblerv'd Sept. 1.1732, afternoon, near the Buoy of the Spite,
and under fall weftward.
Altitudes obferv'd by Mr. Bradley.

The firft and fixth columns of the preceeding tables of obfervations are copied from the minutes, as they were fet down at the time. The divifions of the wooden inftrument not being exact, Mr. Hadley found it neceffary to make a table to correct them by, which was done partly by meafuring with compaffes, and partly by examining them againft thofe of another inftrument. The corrections were every where to be fubitracted from the angles obferv'd and the errors of one degree and three minutes and $\frac{x}{2}$, occafion'd by the mifplacing the 2d fecculum in all the forward; obfervations of Sept. 1. being of the fame kind, are joined with them, in the $7^{\text {th }}$ column of the tables of thofe obfervations. The laft column contains the differences between the obferv'd altitudes, corrected by the forementioned table, and the altitudes as they ought to have appear'd by the computations. Among them there are 2 or 3 , which fo much exceed any of the reft, that for that reafon they feem rather to be owing to miftakes, in counting the minutes on the inftrument, or the time by the watch, than to the errors of the oblervations.
The greateft part of the altitudes were taken by a horizon not clear of land: and by that means not always fo readily diffinguifhable: The obfervers were all perfons quite unaccuftomed to the motion of a fhip at fea, which in this cafe was generally very great and quick; the veffel they were in being only of about 60 tuns burden, as the mafter informed; the fmallnefs of which made it alfo more liable to be lifted, up and let down again by the waves: And if the difference of height occafion d by that means was about 4 or 5 feet, as it was judged to be, it muft neceffarily fink and raife the vifible horizon by turns near one minute. The computations of the fun's altitudes are all made for the Lat. of $51^{\circ} 21^{\prime}$; whereas a good part of them were taken under fail, and upon different tacks; rhe veffel fometimes ftanding N. E. or N. at othe times S. E. for near a quarter of an hour at a time.
Several of thefe circumftances may, probably, have contributed to increafe the inconfiftency of the obfervations: But as no particular notice was taken of them at the time, Mr. Hadley contents himfelf with only mentioning them.
The principle, on which the contrivance of this inftrument depends, was laid down in Phil. Tranj. No 420 , in one proofition and fereral corollaries; the 5 th of which contains the grounds of an approximation for corresting forme fmall errors, which

MEMOIRS of the

which will atife, if the plane of the inftrument be fuffer'd to wary too much from the great circle paffing thro' the a objecte, when the obfervation is raken. There appears reaton to think, that there will be very little occafion in practice for that correction; but it was neceffary to mention it, in order to explain the nature of the inflrument : And as the mariner of deducing that corollary from the propofition may not appear obyious to every reader, Mr. Hadley has here annex'd the demonftration of it.

Let OBC (Fig. It. PI.IX.) reprefent an infinite fphere, at. whofe centre R are placed the 2 feccula, inclin'd to each other in any given angle, and let your common feetion coincide with the diameter OR C: Let BAN be the citcumference of a great circle (to the plane of which the common fection of the feccula OR C is perpendicular) and BR its xadius: Let b a n be the circumference of a circle parallel to $B A N$, and at the diftance $B . b$ from it an Draw $b D$ the fine, and $b r$ the fine complement of the arch $B b ; B D$ is the verfed fine of the fame: Let A be a point of an object placed in the circumference of the great circle $B A N$, and N the point in which its image is formed by the 2 fucceffive reflections, as before defcribed; and let a be a point of another object placed any where in the circumference of the parallel bany and n its image; and let $a b n$ be an arch of a great circle paffing thro' the points a and n : The point a is at the fame diftance from the great circle $B A N$, as the point $b_{\text {, }}$ in e_{i} at the diftance $B b$. Draw $A R, A N, K N, a r, a n, r n, a R$ and nR.
si By the $4^{\text {th }}$ Coroll. the figures $A R N$ and a, n, are fimilar: and confequently, the line AN is to the line an, as $\mathrm{A} R$ or BR is to ar, or $b r, i e$ as the radius to the fine complement of the diftance Bbo But AN is the chord of the arch A HM of the great circle B A N, equal to the tran:lation of the poin A, or double the inclination of the fipecula, and ain is the chord of the arch $a b n$ of a great circle, meafuring the angle a Rin, by which the point a appears remov'd by the two res flections, to an eye placed in the centre R. Therefore, the tranflation, or apparent change of the place of the point a il meatur'd by an arch of a great circle, whofe chord is sto/ the chord of the arch A H N (equal to double the inclination on the fpecula) as the fine complement of its diftarce from the great circle BA N is to the radius.

From any point Cof the circumference OBC draw the chords $C M$ and C in to the fame fide of the point: C , and equal to the chords A N and an refpectively, draws the radius RM; and from R and m draw $R Q$, and $m P$, both perpendicular to $C M$, and cutting it in Q and $P: R Q$ is the fine complement, and C M double the fine of half the angle MRC, or AR N, or of the angle of inclination of the feecula. The little arch M ins will reprefent the difference of the apparent tranllations of the objects in A and $a ;$ and if it be very fmall, may be looked on as a ftreight line, and the litrle mixed triangle $M m P$ as a reCtilinear one, which will be fimilar to RMQ , becaufe R M is perpendicular to $\mathrm{M} m$, and $R \mathrm{Q}$ to $\mathrm{C} M$, and the angles at Q and P right angles. The line C P may be taken as equal to $\mathrm{C} m$, and $\mathrm{M} \cdot \mathrm{P}$ as the difference of the lines CM and $\mathrm{C} m$. Therefore, the little arch $M m$ is : to the line $M P$: : nearly as R : to $\mathrm{R} Q: B u t \mathrm{CM}$ (i.e. AN) was : to $\mathrm{Cm}:$: (i.e. an as BR: to $6 r$; and the difference MP. of CMand $C m$: to the difference $B D$ of $B R$ and $b x:$ as $C M:$ to $B R$; therefore, M m , the difference of the apparent tranflations, is to $B D$, the verfed fine of the diftance B, or to an arch equal to it, in the compound ratio of RM the radius to RQ the fine complement of the angle of inclination of the Epecula; and $C M$ double the fine of the fame, to $B R$ the radins, i. e_{0} as $C M$ to R.
The oblervätion may be corrected by one ealy operation in trigusometry, "as will appear from the firft part of this Coroll. wiz by taking the halfof the angle obferv'd, and then finding anorber angle, whofe fine is to the fine of that half, as the fine complement of the diftance $B b$ is to the radius; this angle doubled will be the true diftance of the objects. But as this operation, tho' eafy, will require the ufe of figures, Mr . Hadley rather chofe the merhod of approximation; becauife by that the obferver retaining in his memory the proportions of the fines of a few particular arches to the radius, may cafly eft imate the correction without figures, when the angle is: not great, and by a line of artificial numbers: and fines, may, always determine it with greater exactnefs than will ever be neceffary.
When the angle obferv'd is very near tro degrees, the correction may be omitted; for, then it will be ealy to keep the plane of the inftement fo near that of the before mention'd great circle, as not to want any, if the firuation of that circle Voe, 1X. 8
be known. If it be not, the oblerver, when he fees the 2 objects together, may turn the inftument on the axis of the telelcope, till he find that pofition of it by which he obtains the leaft angle; and this (if the fpecula be fet truly perpendicuJar to the plane of the inftrument) will always happen, when the objects appear to coincide in the line $g b$, as reprefented in Fig. 6. PI. VII. of Phil Tranf. $\mathrm{N}^{\circ} \cdot 420$. p. 147.

In that Tranjaction a rule is given for finding to which hand of the obferver the object feen by reflection ought to lie, but is reftrained to the particular form of the inftrument there defribed. The general rule is, that when the index is brought to the beginning of the feale (i,e, to 0°, when the inftrument is defigned for angles under 90°, or to 90°, when is is defigned for angles from 90° to 180°) if then a line be imagined to be drawn thereon parallel to the axis of the telefcope, or line of direction of the fight, fo as to point towards the object feen diredly; which way foever this line is carried by the motion of the index along the arch from 0° towards 90° in the firft cafe, or from 90° towards 180° in the fecond ; the fame way the - bject feen by reflection ought to lie from that which is feen directly.
A Regifter of Meteorological, Barometrical, Thermometrical, Epidemical and Magnetical Obfervations, made at Utrecht in 1929 ; by M. Mufchenbroek. Phil. Tranf. N$: 425$. p. 357. Tranflated from the Latin.

THESE meteotological epbemerides are for each year fet down in a large table, containing I_{2} areola, one for each month; of which that for fanuary 1731 is a fpecimen, as reprefented in Fig. . Pl, X. But becaufe all the figns, or characters, made ule of in the other pars of the table do not occur in this month, there are other fpecimens of fome few days of different years annex'd, os in Fig .7 . Which take in an the variety of figns: at the bottom of Fig. . are explained the different charafers made ue of in defgging the meteors; whence will be eafly and at firf view underffocd all that is ne ceffary in contructing this lind of meteorological tables. But fince a full account of what is fet down in thefe journals would be zoo prolix M. Nufebenbroek rehearfes only the mof remarkable things.

On the left fide of the table is fet down the month, to the right of this the numbers that denote the heiglt of the baro-
meter $\frac{\text { eninland inches and lines; they begin at the bottom }}{}$ from 28, and end at 30 ; becaufe in Holland the Mercury is feldom lower than 28 inches, and very rarely rifes to 30 inches: The whole variety, therefore, in the height of the mercury in the barometer, is commodiounly comprifed within thefe numbers; and that by means of a fingle point put exactly in the place, which expreffes the height of the mercury. The barometrical obfervations were taken thrice every day, at 7 in the morning; at noon, and at 11 in the evening, at which times the heights of the thermometer were likewile obferved; the thermometer made ufe of was a mercurial one, made by M. Fabrenbeit, according to his nwn table, the method of whofe conftruction is given in M. Mus chenbroek's commentaries on the florentine experiments: The fale is fuch, as that the mercury in the tube defcends to the beeginning of the degrees, or 0 , when in winter the thermometer is putinto fiow mixed with fal ammoniac; from thence it rifes up to 3_{2} degrees, when water begins to freeze; and to 214 degrees, when the tube is immerfed in boiling water: Thele few remarks are fufficient. This thermometer always remains, fufpended in the open air, but fhaded from the fun; fo as truly to thew the degree of heat, or cold of the atmofphere. In the meteorological table you fee the number 29 for the barometer, from which thro' the middle of the month towards the right are written the days of the month from I to 3 I , which with their numbers are diftinguifh'd by blacker lines; each day is divided by 2 finer intermediate lines into 3 Ppaces, deftin'd for 3 obiervations for every day, taken at the time aforelaid: The thermometrical obfervations are fet down in the uppermoft row, of the month from the left to the right hand: The winds, their coafting and ftrength in the 2 d , and the quantity of rain in the third; this laft M. Nuf chenbrook collects in the fame manner as in the obfervatory at Paris: The numbers in the $4^{\text {th }}$ row denote the quantity of water, that evaporates ont of an open veffel, in a fhaded place: This veffel is an exat parallelopiped made of lead, each of whofe uppermoft fides is 6 inches and its height 18 inches, this veffel is filled every month 16 inches high, and always within 2 inches of the brim. In another row the phates of the moon are fet down in order to obferve the changes this planet might caufe in our atmofphere. In fine, in the eleventh row is fet down the inclination of the magnetic needle at noon: This needle is 4 foot long, and in-

316

 MEMOIRS of theferior to none in perfection, and defcribed in his Magnetical Difertations p. 190. And laftly, in the lowelt rank, is fet down the declination of a magnetic needle, fix inches long, and included in a machine delineated ibid. p. 233. This machine ftands upon a large flat fone, in the middle of his garden; fo that the right line, which paffes thro' N and S. infitts upon the true meridian line; and thus may at any time with great cafe and without any trotble be ubferved the declination of the magnetic nedle: He always made choice of noon, that he might the better compare the inclination with the declination. This is fufficient for undertanding the méterological tables; and now he fabjoins other things which could no be inferted in the tables, and which he oblerved over and above what is fet down there.

In fanuary there was an intenfe cold, efpecially on the σ th 1 ith and rgth days; and he doubts whether any one ever ob. ferved a harper froft in thele parts, the thermometer falling to the fouth degree: In the mean time from the iff to the isthot Fonuary the mercury was lower in the barometer, than it ufually is in frofty weather: Befides, it freez'd, from whatever quarter the wind blew, which is a pretty rare cafe; commonly a day or two preceeding the phafis of the moon, whether at the full, new, or in her quadratures, the weather clianged by the froft's remitting a little : This planet has fo great an influence on our atmofphere, that when he begins to gravitate moft to: wards our earth, and our earth to gravitate towards her, the clouds feem to be condenfed, and the vaporous particles collectei together to become heavier, than that they can be fuffained in ofuilibrio by the atmofphere; and fo they fall down in the form of rain, fnow, or hail, and raile winds, which by their attrition produce heat, and catife a thaw. The form of the fow that fell on the forenoon of the 6 . of fanuary was remarkable it was all rofaceous ftellate, or confifing of parts of ftars hal formed or broken off: M. Mufchenbroek carefully view'd it with a microfope, it feemed to be of four fpecies, yet all of then hexagonal, nearly relembling that obferved by Wesi Cartes a: Amferdan in 1673 , but delineated much more accurately by Dr. Hook in Pl. 8 . of his Micrograph. p. 88. or by Caffini it the Nemoirs of the Royal Academy of sciences fur $169=$ M. Nisfobenbrock accurately delineated the figures of the foow he himferf obferved, one of which (fig 2.) refembles a, rofe whe greateft part thereof was of different gzes: For, tome werr

$\frac{9}{100}$ of a Rbinland inch in diameter; others $\frac{10}{100}$ and others

$\frac{11}{100}$; lome flakes were branchy, (as reprefented in Fig. 5.) and
$\frac{200}{10}$ or $\frac{21}{100}$ of a R binland inch in diameter. M. Muf Chenbroeck 10 does not remember, he ever obferved any like it: With it he filled a weffel of a parallelopiped form, I2 inches high, and feetting it jn a warm place, it yielded half an inch of melted fnow: So that this fnow was 24 times rarer than water; an unufual rarity indeed! Sedilavius, De la Hire and others have obleev'd that rare fnow is fix times lighter than water; but again De la Hire obferved that very rare fnow is is times lighter; and yet Mi. Mufchenbroek obferved it twice rarer fill: He would not take upon him to determine how this hexagonal foow is produced; the various opinions about it may be feen in Cartes. princip. pbilof. Kepler de Nive Sexangul. Erafnus Zartbolin. de ffg.nivis Milliet. in tract. de meteor, as alfo in Pbil. Tranf. $\mathrm{N}^{\text {a }} 92,376$. The fall of this fnow brought along with it terrible cold and froft, efpecially, after five in the evening, which lafted after I'z at night: In all this time, wine, takem out of a deep cellar and put in a corner of a room, where there was a large fire, froze immediately; nay, fcarce did it ceafe freezing, when pourd into glaffes, that itood on a table, not far from the fire. In like manner whatever could be turned into ice, became unhappily rigid. A like cold pinch'd every thing on the in of the faid month; but by a kind providence its duration was fhort, whereby feveral animals and vegetables were preferved from deftruction. A very rare fort of foow, of the fecond form, mentiuned above, fell on Fan.' 8 . at three in the afternoon, confifting only of oblong Spicula, farce $\frac{1}{5}$ o of an inch, in other refpects very llender, and confequenty, very fimple flakes of fnow.

The froft lafted till the 22 , whereby the ice became fo thick, that upon meafuring it in fome larger ditchis of of anding water M. Mufc benbroek found it 20 Rbinland inches thick; , ,in rapid Areams its leaft :hicknefs was 12 or 13 nches: Yet however thick it was, it was entirely diffelved on $F e b$. 1. to that there was fcarce any trace therenf in feveral ditches in the fuburbs of Utrecht; this fudden thaw was owing to a great deal of rain that flll after the 22.

318

 MEMOIRS of theIn the beginning of fanuary, here and there a kindly fort of meafles flightly affected young children; very few or none of them dying.
And during all the time of the froft, till it began to remit, the city was fcarce infefted with any diftemper; the cold driving both the fire, as jt were, and the feeds of all kinds of diforders out of the air: But as foon as it thaw'd, that is, on the 24. of 'Jamuary, angina's and burning fevers began the tragedy; when thofe bodies, that before were conftringed by the fevere froft, were now fuddenly relaxed by the rainy, warm and moift air, agitated by ftormy winds : For, on the very noon of the coldeft day the heat increafed from 8 to 44 degrees on the warmeft day, according to the fcale of the thermometer; a change of heat fo fudden that human bondies could not poffibly bear it without affecting their health. But we are chiefly to attend to the confiderable change in the height of the atmotphere; for, the mercury in the barometer fell fo fwifily in the night between the 24 . and 25 , that M. Mufchenbroeck fearce ever remembers a fwifter defeent; and it ftood almoft at the loweft ftate, a little above 28 inches: Since, therefore, the blond-veffels of the human body, that were before compreffed by the great weight of the atmofphere; and ftill more conftringed by the very intenfe cold, were now very fuddenly relaxed, both by the heat and inconfiderable weight of the atmofphere, the blood muft neceflarily by that means rufls into veffels, fo fuddenly open'd, and not defigned for tranfinitting it; and caufe an inflammation, a fever and other fymptoms.
M. Mufchenbroek here fubjoins a flort hiftory of angina's, which prevail'd at that time; and becaufe they are not always, of the fame nature, he, therefore, takes this hiftory from his own obfervations: The healthieft and fuch as had no figns of any ailment upon them before, were fuddenly feifed therewith in the middle of the night, the righr almond of the ear, as was generally the cafe, was fuddenly inflamed; then immediately the fever came on, with a head-ach, a rigor in the neck and back; and theje parts felr as cold, as if they were plunged in cold water; the following day the fever continued at the fame pitch and with the fame rigor in the back: Some, who were feifed with a fighter fever, falling the enfuing night fpontaneoufly into a plentiful fiveat, got up well in the morning, and entirely free. frem the diforder, but weaken'd more than is ufual lafter a fever of fuch fhort duration; and this circumftance gave fome fulpio eion of fome latent malignity: Others were not fo lucky; for, labour?
labouring under a feverer fever, their angina increafed till the third day, tho' a plentiful venifection and cathantics were ufed from the beginning of the diforder; yet repeated two or three times they gave relief the third day: In the mean time the urine was of a flame-colour, and remarkably fetid; they neither fweat, nor flept; they had a violent head-ach, and a laffitude over all their joints, as if they had been beaten; the tongue was fcarce difcolour'd: The diforder went off in fome on the fifth day, its crifis a plentiful fweat, whilft the urine continued reddillh and limpid all the time. This angina feifed both infants and adults without diftinetion: Many who were cur'd of the angina after two days, had the continual fever recur, of which they did not recover in fix or feven days. For fome years back M. Mufchenbroek obferved, that in winter after a froft, ang ina's were frequent, as foon as it began to thaw; efpecially, if the thaw were fudden.

Befides, there raged other continual burning fevers; which were daily heighrened with a new cold fit about evening. The tongue was dry and black; they had great thirft, warchings, delirium's, violent head-aches, during the whole diforder, the eyes were fixed, and immoveable, as it were, with the appearance of ffafhes of light before them: Some had a ftiffers in the lower part of the abdonien, and fuch made water with difficulty; the necks of others were entirely ftiff; and the whole bodies of others as ftiff as ftatues; and fuch could neither lee, hear, or ftir for two days before they died: Some had frequent convulfions a few days before death: Moft of them died on the 14. day, from the firftonfet of the diforder: He obferved no one efcape, who had not large quantities of blood taken away in the beginning; tho they afterwards ufed diluent, moiftening. and cooling medicines: But fuch generally efcaped, as had large and repeated venifections, and the blood thus taken feemed not to differ much from that in a natural ftate, having fcarce any figns of an inflammation. The weaker fomerimes had numerous yellow apbthe that proved infallibly mortal. This fever was oblerved both in infants and adults.

At noon M. Mufchenbrook daily obferved borh the inclination and declination of the magnetic needles; and he wondred that the dectination did not change at the fame time with the inclination; and this was the cafe not only for this month of Fanuary, but alfo for the whole three years he had made thefe obfervations. On the firt of fanuary he communicated new virtue to both needles, that he might likewife oblerve how long

320

MEMOIRS of the

the virtue would continue undlminithed in iron ; in a pretty generous inclinatory needle, it continued fur two years and a half, and no longer: But how long it will continue in the common feacompafs needles, he could not determine by reaton of the accident to be mentioned hereafter; yet he doubts not but that the wirtue will laft as long as the former: For, common fea-compaffes are krown to retain their magnetic virtue from Holland to the Eiaf Indies and back again: As to the winds, you may ob. ferve that they have no influence on the magnet; for, the inclination and declination vary for two days fucceffively, tho' the fane wind happen to blow; and at other times, when the wind blows from a different quarter for two fucceeding days the inclination and declination continue invariable for that time: Much lefs has fair weather, tain, fnow, or ftorm, any influence on the magneric virtue; for M : Mufchenbroek obferved feveral times, that both the inclinatory and declinatory needle had an of cillatory motion for a whole month together ; at one time the inclination was greater, and at another time lefs; and that declination, which now is to the weft, increafes one day, and deareafes the next, and becomes greater the day after. The difference between the leaft inclination, which was 67°, and the greateft, which was $68^{\circ} 28^{\prime}$, is $I^{\circ} 28^{\prime}$. The difference of the leaft declination to the welt, namely $12^{\circ} 40^{\circ}$, and the greateft, ${ }^{3} 3^{9} 20^{\circ}$, is 40°.

Feb. 8. there was a halo about the moon from 7 till $\frac{2}{2}$ an hour after 9 in the evening; its diameter was 3 and $\frac{x}{2}$ times greater than the apparent diameter of the moon: This is commonly reekon'd to prognofticate an approaching ftorm; but this feems to be without any foundation: For, it was calm the fucceeding day.

On the 25 . feverd. people were affeged with coryza's, from a great degree of heat in the air (confidering the time of the year) from the 20.0 the 24 . which relaxed the whole human frame; the night of the 24. came on cold with a northerly wind, whereby the veffels of the body were immediately conitringed, and an inflammation caufed in the membranes moft expofed to the air: M. Mufchenbroek fcarce ever obferved any coryza's more obftinate than thefe, the inflammation of the membrana Schneideriana reaching from the afpera arteria to the lungs; this caufed a cough, which in the day-time, it is true, was mild and not fo frequent, but was heighten'd from 1 r at night till 3 in the morning, from which time growing milder, it fuffer'd the patient to reft; this troublefome cough continued for three or four weeks, and upwards, without yielding to any remedies, as venifection, cathartics, fudorifics, emollients, nárcotics, expectorating, and moiftening medicines; what fometimes anfwered beft, was a revulfion made by means of tents of Brafl tobacco, which put into the nofe caus'd a very great irritation, and derived the fharp matter towards the noftrils: Such cough, as would not yield to this remedy, was cur'd only by length of time. The greateft inclination of the magnetic needle was ' $69^{\circ} 30^{\prime}$, the leaft $68^{\circ} 25^{\prime}$; the greateft declination $13^{\circ} 20^{\prime}$, and the leaft $13^{\circ} 10^{\prime}$.
March 27, at $\frac{1}{2}$ an hour affer 10 in the evening, M. Mufchenbroek obferved the firf aurora borealis for this year, attended with fome what unufual phenomena : From the northern quarter of the heavens towards the weft as far as the N. W. b. N, and in like manner froin the north towards the eaft, as far as the N. N.E, and from the horizon to the height of 20°, the Iny was overcalt with a very thin cloud, and fo rare, that fars of the fecond and third magnitude fone thro' it, yet it was remarkably bright; its fuperior linb was defined by an uneven edge, fomewhere from its middle arofe a column, perpendicular to the horizon, 10° above its uppermoft limb, and paffing thro' the middle of Cafiopeia; ; it light was equable, ftill and immoveable, and lafted very long; nay, no rays or fiery columns were fhot from the cloud, as ufually happens in fuch aurora's: This aurora therefore was unufually calm; and befides, the fky was exceeding ferene, with a pretty ftrong eafterly wind of the fecond degree of ftrength; and yet the matter of the aurora hung perfectly ftill above the region of this wind; fuch lort of matter, therefore, either on account of its lightnefs, or rarity, feems to afcend to a confiderable height in the atmofphere ; and this may likewife be eafily prov'd from other ubfervations.
Next day the remains of this aurora ftill continued, forming only a thin nubecula, fcarce fhining, and not above 20° above the horizon; it emitted neither fhining rays, or columns, nor extended far from the north either to the eaft or weft; it fill fone at midnight, and afterwards evanifh'd without leaving any trace behind.
Scarce was any month ever drier than this, the quantity of rain being only i line and $\frac{\pi}{4}$: In the beginning it freezed pretty hard, fo that on the 10 of March the ice was fo thick in all the ditches, that it couid bear fkating on, and all the fhipping was blocked up: But on the \mathbf{r}_{2}, the froft remitting fomewhat,

[^0]S:
and
and the heat of the fun fo ftrong in the day time, it was grea part melted on the 13. and this very evening, a Jhip fet fain from Utrecbt to Amflerdam; but fo keen a froft, and fudden: thaw, are rhings that rarely happen in thefe parts; fuch a fudd den change in the air muft neceffarily have caufed difeafes nay, hence immediately fprung pleurifies and peripneumonia's both which were of a kindly nature: For in the pleuretic dit orders the fever came on the firf dav; which was continuall but finall, with a flight pungent pain of the fide, poffefing the fuperior and anterior part of the thorax; the day following the pain deicended as far as the lower ribs, and all the while tho ipittle was yellow, mixed with bloody ftreaks; the cough was neither troublefome, nor frequent; the ftools were natural, tho nleep good and refrefhing; the colour of the tongue was fearce changed ; the thirft little; the urine limpid, and not higher colourd than ofual ; all good indications of a kindly nature on the third day the fever with all its fymptoms entirely ceafed This pleurify was cur'd by a benign refolution of nature, with out venifection, only taking down plentiful draughts of a ptifan, ufing honey, and the lighter kinds of food. This diforden aflieted chicfly the aged and adults.

At the fame time peripneumonia's made their appearance? beginning with a violent head-ach, a fight fever, fome ftrait: nefs in the breatt and a refpiration fhorter than ordinary: Yer were the patients in a fhort time weakened, which might make one fufpect fome latent malignity, had not the pleuriffies, that raged at that time, been fo favourable: The blood in venifec: rion gave no figns of inflammation, but refembled the natural ; the urine was of a more intenfe red, the fweat moderate, as alfoo fleep, which was quiet and always refrefhing; and now on the fecond or third day affer, there was a pretty heary nubecula im the urine: The fpittle was light and thin; the cough exceeding troublefone, which encreafed the headrach; the thirft moderate, the back of the tongue reddifh, and the belly conftricted; next day the fever was milder; the urine full of critical matter, and fuch it continued for the following days; fo that the difforder entirely terminated in 7 or 8 days: But the cough lafted for 2 or 3 days longer; yet it was happily removed by the ufe of honcy. This diftemper fearce required the affiftance of a phyfician, and went off either with or without venifection, of adminiftring any medicines. It is true, that about the latter end of March, the peripneumonia began to rage much fiercer. when it freczed in the night, with an ealterly wind; but in the
day time the fky being very ferene, the air was pretty warm about noon, the thermometer ftanding at 54,58 and 59°. Human bodies feem fcarce capable of bearing fich fudden viciffitudes of heat and cold, without falling into very acute diforders: a very acute fever, therefore, heighten'd every day about the evening, together with a frequent cough, immediately feifed the patients, and exceedingly infamed the blood, as appear'd by venifection: There were no peculiar fymptoms throughnut the whole courfe of the diftemper; greater number of patients than ordinary died; and fuch as efraped, continued ill 14 days.

The greateft inclination of the magnetic needle this month was 70°; the lealt inclination $68^{\circ} 10^{\prime}$. The greatelt declination $13^{\circ}, 40^{\prime}$; the lealt, $13^{\circ} 15^{\prime}$.

On the 28 of Aprif at $\frac{x}{2}$ an hour after 10 in the forenoon M. Mufcbenbroek difcover'd a very beautiful phenomenon, and which was feen till $\frac{1}{4}$ after II.

In order diftinetly to conceive this; fuppofe, the fpectator P. (Fig. 6.) with his face to the fouth, and his back to the north, and thus looking up to the heavens; chen 2 circles with the interrupted part of another appear'd, whofe planes were parallel to the horizon; Z the fpectator's zenith, the centre of the greateft circle FKHG, or rather of the ring, whofe internal diameter was 58015^{\prime}; its breadrh could not well be defined, but it was judged to be more than 30^{\prime} : He dif. cover'd no colours in it, is appearing only white : The fun S was in the centre of the $2 d$ circle, which interlected the former in 2 places, K, H, and enter'd a litrle way into it: From the fection H, there was a certain place G in the former white circle, brighter than the reft, and of the fame apparent magnitude with the fun; in that part regarding the fun it was variegated with different colours; the diftance $H G$ was $50^{\circ} 30^{\prime}$, the internal diameter of the circle AB $45^{\circ} 30^{\prime}$, this circle was tinged with a variety of colours, it was red internally, towards the fun and white, externally, and the intermediate colours were a pale blue; they were exceedingly bright in the tract D for fome little way: It was firtprizing that this circle was not every where of the lame breadth, but narroweft at I DH: The breadth of this ring appear'd near twice lefs than the former; yet ir was not meafured with fuch exactnets as might be wilh'd: This circle was touch'd by an arch of a 3 d circle E lying very ioutherly ; which allo feemed white, and deltitute of all colour: This

324
 M EMOIRS of the

arch was the firft that difappear'd ; then the eaftern part A of the colour'd circle ; and after that the fouthern part E vanifhed; and then alfo the eaftern portion F of the white circle vanifh'd ; and after that the weftern part B of the colour'd circle; upon which the weftern portion G of the white circle difapjear'd, and at length its moft northerly part.

The fky was all the while overcaft with fmall clouds, interrupted here and there, as it were, and neither fo denfe, nort quite fo rare ; and yet they feemed to le at a great height in the atmofphere. Whilft this phenomenon lafted, the wind was northeaft, and छetween the firft and fecond degree of ftrength, and when the phenomenon vanifh'd, it increas'd too the $2 d$ degree, and continu'd fo for an hour ; afterwards ito was more gentle again : This happen'd at the time of new moon, the air being moderately warm; and tho' M. Nuf chen:broek was very attentive in oblerving whether any icy or watery corpufcles dropped down from the heavens, to which, ats caufes, the phenomena of circles might be afcribed, as Huygenss, Maraldi, and other learned men, had obferv'd in parhelia: yet he could obferve no fuch thing: He the fame day was told by credible perfons, that for the two preceeding days in the fore? noon they had obferv'd a ring about the fun.

In this month the meafles were obferv'd, and tho' not fres quent, of a kindly nature; fo that no child, under his care died of them. About the middle of this month, the heat now relaxing the bodies, that were before conftringed by the lafting? wibter cold, intermitting tertians broke out; which were all (as thofe in the fpring generally are) of a kindly nature; thes increas'd with the firft 3 paroxyfms, and then decreas'd, ceafing? for the moft part in 6 paroxyfms, either fpontaneounly, or by ufing hot bitters, or fome of the lixivious falts.
Double tertians, it is true were a little more obftinate; bu: yet fo eafily cured, that they brought no fmall credit to the proz feffion.

Here and there aged people were feized with peripners: nonia's, which were mortal, and which yielded to no re: medy.
The greateft inclination of the magnetic needle this montli was 71°, the leaft $68^{\circ} 45^{\prime}$: The greateft declination $13^{\circ} 35^{\prime \prime}$, the leaft, $13^{\circ} 10^{\prime}$.

The beginning of May ftill prefented nothing other than the difagreeable and melancholy effects of a fharp winter and laftines
cold: For, no tree had hitherto budded; only here and there the apricot and peach, expofed much to the fun in warm places, fhelter'd from the wind, began, tho' very late, to unfold their bloffoms: The limes that adorn the city walks, afforded ftill a. difmal profpect, without giving any figns of budding; and the fields ftill continued to wear a no lefs melancholy afpect: But after the 20 day the fun fo plentifully difpenfed as heat over all the vegetable kingdom, that both leaves ant bloffoms broke out, and the fpires of tender herbs feen 1 to haften their growth to the eye: And this was the c of a fruitful year; apricots and peaches were in great ple and afterwards ripen'd in their feafon; there was alfo a plentiful harveft, the fummer and autumn being clear and warm, with moderate fhowers of rain: It is an obfervation of fome ftanding in thefe parts, that a long, and not too fharp a winter, and a backward fpring, portend a fruitful year: For, generally in the beginning of May the nights are cold, and even frofty; which nip the tender embryo's of bloffoms and fruit; wherefore if they are late a coming out, they afford a certain profpect of fruit.

On the 4 th of May at 10 o'clock in the evening the moon was furrounded with a corona, in which there was nothing uncommon, and neither ftorm or wind enfued.

After the 25 th, the Lecca, a mile and a half from Utrecht, overflow'd the Dykes near the Wyck te Duerfede; below this town towards the fea, the water ftood s inches higher than the mark of imminent danger, fet in fome places of the dykes; this water came from the Rbine, after receiving the fnow fuddenly melted by the vernal heat: From the 16th to the 20th of May a prodigious quantity of fnow fell about Geneva, which cover'd all the roads; a thing very uncommon in thefe parts at that feafon ; the melting of this fnow fwell'd the R bine in that manner, and the Rbine the Lecca.
The month was ufhered in with mild pleurifies, accom. panied with the commnn fymptoms only, and they went of pretty foon, by venifection, cooling, diluent and moittening medicines: But a fcarlet fever raged amonglt young children, which infected all that happened to be in the fame houfe, or to frequent the fame fchool : on the firft day they complain'd of ${ }^{2}$ pain about the region of the heart, that frill afficted them the Σ following days, with a great thirft; hence the tongue was dry and cover'd with a white mucus; the fever in the mean time was conti nual and at the fame pitch: About the end
of the 3 d and beginning of the $4^{\text {th }}$ day, the whole habit of the body was covered with fmall far puftules fo near one another, that fcarce any intermediate fpace was left : Hence the whole body was of a fcarlet colour: Yet there were but few puftules on the face; the eye-brows feem'd to have very fmall punctures, and no bigger than the point of the fineft needle; afterwards the tongue became very red; the firft 4 days the patients had no fleep, or at leaft it was continually interrupted, with convulfions and a delirium : On the 5 th day a drowinef's came on, and the rednefs abated fomewhat, the patients having a conftant fruitlefs defire of going to ftool: The impetus of the fever decteafed: The lips were dry and chapr, whereby the following days the fever was more decreas'd: Such recover'd on the roth day, with a defquammation of the whole skin of the body: But in other patients the fever increafing on the s th day caus'd delirium's and convulfions, of which they died on the Sth day: This diftemper was fatal to fome.

The greateft inclination of the magnetic needle was $70^{\circ} 35^{\prime}$; the leaft $69^{\circ} 25^{\prime}$: The greateft declination, $3^{\circ} 8^{\prime}$; the leaft 122°.

In fiune, the 19,21 and 22 days were very hot, there being none fich for the reft of the year; for on thofe days at noon the thermometer ftood at $86,90,92^{\circ}$; yet fome nights in this month were very cold, as the 9,10 , 15 and 12 , on which it happened to freeze. This year the fmall pox were very fatal. The diftinct kind began this month very favourable, and without any thing uncommon; but they afterwards proved fo much the more fatal. Towards the clofe of the month, putrid Fevers broke out, undoubtedly, nwing to the great vicifitudes of heat and cold; for, it happening to freeze the preceeding nights, the bodies of men were exceedingly relaxed by the greak heat in the day time; hence arofe acute fevers, which yet raged rather among the common people, who are more regardless of their health, than among the temperate citizens.

The greatelt inclination of the magnetic needle was $71^{\circ} 15^{\prime}$; the leaft $70^{\circ}, 25^{\prime}$: The greateft declination $10^{\circ} 45^{\prime}$; and the leaft $12^{\circ} 17^{\prime}$.

In Fuly there were few diforders: Yet the fmall pox ftill continued, and gathered ftrength, proving mortal in fome intances: A young woman, in the prime of her age, labouring under the confluent kind, had fuch an impetus of blood, that her menfes fluw'd plentifully on the fourth day at an

Royal Society.

 unufual time, with which fhe died on the fixth. This month was exceeding dry; and the air fo dry that it quite parch'd up both plants and animals : Hence fome inflances of inflammatory angina's, which would have prevailed more, had it not rained on the 27 and 28 , whereby both vegetables and animals were refrefhed.The greateft inclination of the magnetic needle was 72°, and the leaft $71^{\circ} 30^{\prime}$. The greateft declination $12^{\circ} 55^{\prime}$, and the leaft $12^{\circ} 28^{\prime}$.

In Auguft there were frequent thunders, and a great deal of rain. The fmall pox feemed to grow fomewhat milder; many, it is true, had them, but generally of the diftinct kind; the patients were fcarcely fick, and requir'd no medicines; and thus they were happily cured.

Intermitting tertians began to appear, as is common in Auguft, but as favourable as in the fpring, and were happily removed, either with bitter antifebriles, lixivious falts, or fal ammoniac, feldom exceeding the fixth paroxyfm.

The greateft inclination of the magnetic neẹle was $72^{\circ} 3^{\prime \prime}$, and the leaft 71° : The greateft declination $13^{\circ} 36^{\circ}$, and the leaft $\mathrm{I}_{2}{ }^{\circ} 25^{\prime}$.

On Sept. 26, between 5 and 6 in the evening, a large corona was obferv'd about the fun; but as M. Nufchenbrock himfelf did not fee it, and as little credit is to be given the accounts of the unlearned, he waves the defcription of it.
In the mean time intermitting tertians prevailed, which were more malignant than the former; fo that for the firft three or four days, after the manner of autumnal fevers, they emulated the continual: When the firft ferment was over, they fhew'd themfelves either Gimple or double tertians, which required ftronger remedies than the fevers in Auguff; and they yielding cither to vomits and the falts, or to the bark. There likewife arofe burbing and acute fevers, greatly endangering the patients, carrying off moft, and fparing none, unlefs forcibly fatched from the jaws of death: A girl, of about fix years of age, had fuch a burning fever upon ber, that the third day from the onfer, the was not only delitious, but difcharged a great deal of blood at the mouth, nofe, anus and puldenda; and within the fourth day the died miferably convulted.
Now the fimall pox had acquired ftrength, and were generally of the confluent kind; on the eighth or ninth day they proved mortal to many, and made tersible havock both among

328
 MEMOIRS of the

children and adults: Yet hitherto they had not arrived to the higheft pitch of malignity, as in the following months.

The greateft inclination of the magnetic needle was $72^{\circ} 30^{\prime}$, the leatt $71^{\circ} 45^{\prime}$: The greateft declination was $13^{\circ} 40^{\prime}$; and the leaft $13^{\circ} 11^{\prime}$.

For the whole month of OCZober, angina's prevailed, rather watery and mucous than inflammatory, as being accompanied with a llight, or fcarce any fever at all, the almonds of the ear were chiefly fwell'd, the uvula alfo fallen down; but eafily cur'd by ftrong cathartics, and a heating plaifter pur round the fauces.

There were fome inftances of dyfenteries, noways mortal, but happily cured by a dofe of bypecacuanba.

Simple or double tertians were neither rife nor obftinate, generally terminating in feven periods, and yielding to gentle medicines.

Towards the clofe of October, namely after the 26th, coryza's were frequent in a great part of the city, with a fever from an extraordinary inflammation of the membrana fchneideriana, generallyalcribed to the cold of the 26 th at nights, when there was a remarkable froft.
But the fmall pox, which were the principal diftemper: this month, were the confluent kind, malignant, mortal and very fmall: They made great havock in the city: And fuch as efcaped, had their faces ever after much disfigur'd.

On the 2 Ift in the evening M. Mufibenbroek obferv'd a fmall auroraborealis, in which there was nothing uncommon:: In the very north point, from an arch'd cloud, elevated a little above the horizon, arofe, as is ufual, bright columns, neither rifing high, nor very fhining: The whole phenomenon ceas'd in an hour, and began at $\frac{3}{4}$ after y in the evening. By the news-papers, it appear'd that on the fame day an aurora borealis was obferv'd in Italy.

The greatef inclination of the magnetic needle was $72^{\circ} 30^{\prime}$; the leaft $70^{\circ} 45^{\prime}$: The greateft declination $13^{\circ} 48^{\prime} ;$ the leaft $13^{\circ} 20^{\prime}$.
Nov. I 6 . a very bright aurora borealis appear'd, and fuch as M. Mucchenbroek never obferv'd any like it, either as to fize, brightnefs, or the furprifing mimickry of itss different appearances: It was very large, and obferv'd ins feveral cities of Holland; at Leyden by M. Zumbachius, andl at Rotterdam by an anonymous perfon, who defcribd it in the literary journals for this year; the former explaining ir in
differtation exprefs: It was likewife obfervd at Berlin by M. Kirch, and inferted among his affronomical obfervations. M. Mufcbenbroek difcover'd it at about 8 in the evening; at that time it poffefs'd the north, eaft and fouth parts ot the heavens, the weft alone being free from it. The iky was ferene, but a white and opaque cloud; 15 degrees above the horizon, began from the north, extending from thence beyond the eaft, but terminating by an oblique edge in the horizon; fo that between eaft and fouth, it defcended below the horizon. This cloud darted forth white, thining, but not very bright rods, fome of which were carried direct, and others oblique to the zenith : Sometimes fuch as afcended from different parts, met together there, and then whirled about with a vortical motion, went off to the fouth, weft, or fome other intermediate point, falling down, as it were, towards the horizon; a thing often obferved by others in aurorce boreales: But now in the eaft a huge, threatning, fiery erea column ftood perpendicular to the horizon, which feemed fix degrees broad, and 45 degrees high: This huge body was not fo fleetiog as the flighter radiations, for the moft part of a very fhors duration, but for feveral minutes continued without changing either its figure or magnitude; yet it was carried with a llow motion towards the fouth, and in a quarter of an hour it vanifh'd. At the fame time in the fouth, about 24 degrees high, were two fhining columns, parallel to the horizon, large, broad, and extending in length, one extremity of which regarded the eaft, the other the weff: They were feen in this manner for three minutes, then they approach'd flowly to each other, and were both blended together, and in two minutes after entirely vanifh'd, without leaving any trace behind, and the fky there remained ferene : But very beautiful phenomena were feen at half an hourafter nine; for, a very broad column rofe perpendicularly above the horizon, in that part of the heavens, 20 degrees from the north towards the eaft; this was red as glowing hot iron, denfer than the other whitith rods; for, farce could a ftar of the firft magnitude be feen thro' it : This was feveral times renew'd; thone for five or fix minutes, and becaufe a new one rofe up continually, it lafted for upwards of an hour: At the fame time there arofe from the north towards the zenith a rod of very white light, that blazed much; it was very bright where it adher'd to the cloud, and darker the higher it afcerded; its breadth was much lefs than that of Vor. 1X. 9
the

MEMOIRS of the

the former: It mov'd flowly from the north along the eafe to the fouth, parallel to itfelf. At io o'clock the fky all around was on a blaze, and the four quarters of the heavens ftrove, as it were, which fhould outhine each other in brightnefs; for, now that part of the heavens, between north and weft, which hitherto had been quiet, emitted at different: times a grear number of very bright rays, that were carried partly towards the zenith, and partly in an oblique fituation to the horizon from north to weft: In a moment after, a north-eaft wind arifing, there was a very beautiful appearance , and fuch as M. Mufchenbrook never obferv'd either before or: after: Hitherto the matter of the aurora borealis remain'd unmov'd above that tract of the atmofphere, where the wind blew; but the wind afcending a little, graz'd gently along; its lower part, and carrying off portions of it here and there made the heavens shine with interrupted corufeations, thatt mov'd very fwiftly, like undulating waves: He obferv'd thiss for upwards of an hour in the eaft, not that its appearances was conftant; at one time it was feen, and again it was quiett for two or three minutes, and was foon renewed again; fo thate it fhone by firs. M. Mufcbenbroek wifhed he could have: mark'd all the phenomena that appear'd at the fame time $;$; but they were fo numerous that 1000 eyes were not fufficient for the tafk; and when he directed his eyes to one part, au thoufand things worthy obfervation efcap'd him in the oppo-fite part behind. After 10 o'clock there arofe in the wefti as far as the north a feries of three black clouds, at differente heights above one another; the loweft was arch'd, with itss legs inclined towards the borizon; the other two, diftinct from each other, were defined by ftreight ends parallel to the horizon; from thefe were emitted fhort rays, that fearce Shone, like the teeth of a comb, as it were; in fome places brighter and mach longer, like a bright fmoke tumbling out of a chimney. At in bours the heavens fill fhone from all quarters, efpecially the fouth; not that the columns arofed from the fouth towards the zenith, but they were deprefs'd from the zenith towards the horizon, being driven by a northerly wind from the north along the zenith towards the fouth : By this time the wind had increas'd to the fecond degree of ftrength, whereby the appearances feem'd toc diminifh flowly; the columns were not fo frequent, of as ihorter duration, and fooner rolld along till at 12 g'clock the fky began to be overcaft; in a little time after it clear'd
up again, but with a much lefs brightnefs than before: At length at 2 o'clock in the morning the whole ceas'd, there ftill remaining fome denfe clouds, and fome white ones, that ftood unmoved in the weft, north and eaft, at about 45 degrees above the horizon, the reft of the heavens continuing ferene: Whilft this appearance lafted, the fky was fo clear, that M. Mufchenbroek could diftinguifh the larger charafters almoft as eafily as in a clear night, when the moon thines, and is not at the full: When the whole heavens were on a blaze, there was then no fhadow projected from the houfes: This bumen boreale happened after a foutherly wind, that blew hard the night before.
In this month M. Mufichenbroek obferv'd fome rheumatifms, which, accompanied with the common fymptoms, fometimes yielded to medicines; yet at other times they carried off the patients, by throwing the morbific matter cither into the brain or inteftines: There was likewife a pleurify, but of a kindly nature, and eafily removed by repeated venifection, and cooling, diluent medicines: But M. Mufchenbroek with horror reflects on the fmall pox, which were fo peftilential and malignant, that, probably they never were more 10, fcarce a houfe in Utrecht efcap'd them: In November there commonly died 20 , or at moft 25 every week; but what havock did the fmall pox make at this time? In the firt week were reckoned 65 , the fecond 74 , the third 69 , and the fourth 59 . When the plague raged mot in Utrecht, according to the accounts from hiftory, there did not die fo many in a week. The fmall pox carried off fome on the fourth or fifth day from the firt onfer; others on the 8 th, $\mathbf{1}$ th, $\mathbf{4} 4$ th, 16 th; nay, a month after, namely, when the patients bodies became corrupted with the infection. And fuch as efcap'd were in the greareft danger; and fometimes fuch, as had the favourable fort, and with the beft figns, died fuddenly; and others recover'd, who thad had the worf fymptoms, and feemed to be infected with a gangrene: At this time no one could afcertain the life of any patient, as the diftemper continually eluded the moft fkillful in the profeffion: Sometimes, it is true, there were great hopes, but there was no certain prognoftic. M. Mufibenbroek himfelf faw and had under his care fome patients, on whomi the fimall pox had broke out again after the $14^{\text {th }}$ day, in pretty great numbers on the face and the reft of the body, and which fuppurated only on the 22 day, yet fuch recover'd:

He has often feen the tongue, palate, and gums fo full a the fimall pox, that one could not find a place the breadth of a muftard feed free of them: But all fuch patients died: He obferv'd them for feveral days make white ftools very full of pus; fo that the whole inteftinal tube was no orher than the repofitory, as it were, of the fmall pox, and the ductus coiedochus iffelf was befer and blocked up with them; fome of thefe died, and others recover'd: M. Mufchenbrook compiled very accurate hiftories of a great many of the fe patients, that he might learn the furprifing nature of this diftemper; but they are too prolix, to be inferted in thefe journals: He wifhes fome one were folucky as to find out a fpecific for this contagion: After M. Mufchenbroek had tried feveral things, he found that fuch patients were the luckieft, who were leff to themfelves without any medicines: Hence fuch phyficians as prefcrib'd nothing fav'd the moft patients: Some kill'd their patients by officioufly giving them an infufion of fheep's dung, and others were not more fucceffful with their acid firits, as fpirit of nitre or oil of vitriol in their ptilans, EGc. Hot medicines and fudorifics were as prejudicial, as diluent and cooling ones: Venifection on the firft days before the eruption of the puftules was almoft infallibly mortal: M. Mujchenbroek is both afham'd and griev'd to fay any more on this; diftemper, the great reproach of the profeffion.

The greateft inclination of the magnetic needle was 72 degrees, the leaft $70^{\circ} 35^{\prime}$: The greatelt declination was 7 $3^{\circ}{ }^{\circ} 28^{\prime}$; the leaft 13°.

The month of December was exceeding rainy; and in the four years M. Mufchenbroek carefully made fuch obfervations, he does not remember that a grearer quantity of rain fell, it being four inches and a half. On the fixth day the mercury in the barometer was lower than ever it had been in the whole four years, being at 27 inches 10 lines.

The fmall pox itill raged as in the former month; yet they were lefs mortal, becaufe the number of fubjects on which the y might exert themfelves was fewer. A bout the middle of December fome tertians arofe, but exquifitely favourable; as was alfo a pleurify, that carried off a few, and accompanied with the ufual fymptoms,

The greateft inclination of the magnetic needle this month was $72^{\circ} 48^{\prime}$, the leaft $73^{\circ} 10^{\prime}$. The greateft declination was

The whole quantity of rain that fell this year was 25 Rbinland inches 1 line and $\frac{x}{4}$ perpendicular height: The quantity of water, that evaporated out of the open veffel above defcrib'd, was equal to $3_{2} R$ binland inches 2 lines and $\frac{3}{4}$. Should any one afk, if a greater quantity of water evaporate than falls down, what becomes of it? In anfwer, let him confider, that the quantity obferv'd by M. Miff benbroek afcends from the water, and not from the earth, upon which notwithftanding the rain falls; confequently, if the quantity of rain, that falls in thefe parts, had likewife its origin therefrom, and the fuperficies of the earth were as large as that of the water, a twice greater quantity of water nearly muft neceffarily afcend in the form of vapours, than what feems to fall down in the form of rain. That a greater quantity of water evaporates than what falls in rain is the cafe not only in thefe parts; but M. De la Hire obferv'd the fame thing in France, as may be feen in the Memoirs of the Royal Academy at Paris for 1703 .

Whoever furveys the magnerical obfervations, cannot but be furprifed at the vicifftudes of inclination and declination, oo which magnetic needles are daily fubject in the fame part of the earth: Hence it is impoffible for one from the known declination of the needle for fome time before, to conclude that he is in the fame place, when he obferves the fame declination: For, the variations are very irregular: They by no means agreeing with the changes of the atmofphere, oither as to its degree of heat, weight or motion: Wherefore, the caufe, which directs the magnet in the bofom of the earth, is not to be fought for above itfelf; this will neceffarily be fubject to perpetual motions, and the fe do fteel needles obey on the furface of the earth. Upon examining his obfervations for the whole year; M. Mufcbenbroek doubted, whether it fhall ever be poffible to promote the doctrine of the magnet fo far as to be able to bring its declinations to certain rules, and to predict them at fated times for any part of the earth: Neverthelefs it will neither be unprofitable not unpleafant to collect fuch obfervations; becaufe they may at fome time or other happen to hew more of the caule, than we could have expected. burn, Phil. Tranf. N ${ }^{\circ}$. 425 : p. 385 .

IN reading Dr. de Fuflieu's memnir, about the prefent dif grace of ipecacuanba in France, and the method he proo poles for redrefling its defects by Simarouba, a root brought from Cayen in America, Dr. Cockburn was furprized to find az remedy, almoft adored for half a century, to have fallen intoc the utmoft contempt ; a fpecifie, (a very fhort and fatisfactory) word) entirely neglected by its moft zealous votaries. The learned profefor alledges, that this great revolution in the fame of ipecacuanba, is owing to its having been unskilfallys adminifter'd: Phyficians commonly confidering the general ap.. pearance of a loofenefs only, without penerrating into the part ticular caufes which fupport it, and require on that accounn different methods of curing it. M. de Fufieu, avoiding all. extremes, is not for banifhing ipecacuaniba altogether out on the practice of phyfic, as many of its difappointed adorert now do ; becaufe it is not the infallible fpecifie they vainlys imagined it to be.

This common mifapplication of medicines, or our ignorance of the particular circumitances of a difeafe, when it requires : different method of cure, is the very reafon why great numbers of excellent medicines among ancient phyficians have been loft: becaufe they were not underitood. Take a broken fhin, for, in? ftance, which has the skin only rubbed off, obferve the diffis culty the beft and honefteft furgeons have to cure it : Go tco Aetius and others, where you may find a fafe, eafy and fpeedy cure, which as the fame author on another occafion obfervess the people make night of; becaufe they do not know the danger or trouble that often attend it.

A loofenefs is more liable to be miftaken than the greatenf number of other difeafes; becaufe it is produced by 2 imme diate caufes that are very different, when the reft have ond caufe only, however great the diverfity of particular cafes may appear to be. A fever, for inftance, has but one caule, tho the variety of fevers, or the various appearances, of a fever are infinite, and never can be clafs'd by obfervation: The Dri therefore, confiders the different circumftances of a loofeneti obferv'd by Dr.de $7 u f$ fieu, and that occafion the mifapplication of ipecacuanba: But the former afterwards endeavours ic make the latter's account more perfect; for, thereby phyfil cians will be able to have more perfeet intentiong and views ou curing than hitherto they have had.
"Wher

- When great crudities, fays Dr. de Juffieu, and indigefted ftuff in the firlt paffages, or an obftruction in the vifcerat of the lower belly, are the caufe of a loofenefs, we may always expeta the common good effects of ipecacuanba for a cure. On the contrary, when ifecacucnba is given - againft an hepatic dyfentery, or againft a great difcharge - of blood upwards or downwards, often occafion'd by a purging medicine that was given for a cure of the loofenefs, no fuccefs can reafonably be expected from the fpecific ; far lefs - have we any hopes, when ipecacuaniba is given for the cure of a loofenefs that fubfifts on an inflainmation of the lower - belly, or when fharp and fixed pains give us a fufpicion - that the dyfentery has a cancerous ulcer for its caufe.

As there is no difficulty that is peculiar to a dyfentery, and is not common with the dangers of a diarboca, the terror of blood not excepted, it muft be acknowledged that any vomit as well as ipecacuanba is a proper cure againft ill digeftions and crudities in the ftomach, as Hippocrates anciently obferv'd ; and has been believ'd by all phyficians fince his time: fo that there is nothing in the French fpecific that is not in falt of viriol; which we find held its repuration in curing dyfen. teries longer than ipecacuanba is like to do.

It is more furprifing, that this way of curing a loofenefs by ipecacuanha was not looner determined. Nothing befides the idle talk of a fpecific, that excludes all reafoning and reflection, could have made men eafy under fuch grois ignorance. The very inftance given us by the late excellent Dr. Tournefort, in the cafe of his tutor Petrus Sylvanus, is a fufficient proof, that ipecacuanba is no charm of a ppecific; but that it cures by its evacuating: For, when the weaknefs of Sylvanus made them cautious in adminiftering the fpecific, the difeafe held its ground againft the charm, and its adorers; till defpair drove the phyfician upon larger dofes, the laft refort of the vanquifh'd; and they produced evacuations by vomit and ftool, and thereby his health in one night.

It would be fuperfluous to oblerve any thing on what is faid about the Simarouba, and how far it may remedy the defects of ipecacuanba; the trials of it being few, and nor fufficient to determine the univerfality of its ufe: Far lefs does the Dr. Enquire, wherher the W'eft-Indic plant has any relation to the Macir from the Eaff-Indies, mention'd by 'Pliny Hijf. Nat.
lit. 12. tho' he wilhes Dr. de fugleu, had prepared the Si-
marouba with honey; fince the greatcures (recorded by Pliny) performed by the Macir, might be affifted by its being prepar'd in that way. The Dr. then proceeds and makes the foregoing account more perfect, more obvious, and better fitted to fix the views of phyficians in the point they are to purfue: For this purpofe he gives a plain account of the feveral fpecies: of a loofenefs, and in each of them he applies the different kind of remedies made ufe of for their cure. Thus we thall perceive the proper adminiftration for every lootenefs, and how far any of them is left without a cure.

The anatomy of the guts alone informs us, that the immediate caufe of every loofenefs, whether fymptomatic or effential, muft either be a quicker conveyance of the common quanrity of concocted food, and of the liquors that are commonly mix'd with it in the guts: Or the caufe of a lonfenefs is a greater fecretion than ordinary of a watery fubitance from the bloodi into the guts, and brought inta them by the pancreas, and vavious other glands. In both which cafes there muft needs be: a larger difcharge of liquid excrements by ftool than ufial, or there muft be a loolenefs. "A loofenefs, produced by the firt of thefe caufes, admits of great variery; both on account off the different fimsuli, and even the different degrees of the: fimulus in each of them. The fimilus, for inftance, of indigefted food, fruits and the like, differs very much from that: of gall. The firf fort is confined to the ftomach and inteftines $;$ in which cafe the difeafe is often a cure to ittelf: Whereass the ftimulus of gall is greater, and the caufe is more perma. nent, and feldom carries off itielf. 'The degree of the fimuluss may be derermin'd by fome other concomitant fymptoms off nime, glair, \&rc. But when the flimulus is oceafion'd by the: piles, an ulcer, or a fricture in the guts, it is valty more: violent, and departs from the common cure of a loofenef; ; whereby phyficians are ofien- fubject to fatal errors, and grofss mifapplications of their medicines. The watery loofenefs, pro-duced by the other iminediate caule, is, indeed, deplorable; becaufe a method of curing it, is not commonly known. It: is not only as a principal, but it is a jecond in the beginning, at the end and in the intermediate times of all other difeafes, and even in old age, when nature is fubmitting to the power of death; when phyficians call it a colliguative loolenefs; becaufe: it feems to melt away the Gefh of the patients. Petrus Salius Diverfus, a mot approv'd phyfician, affirms in lib. de pefte? p. 188,189 , that is is vain for a phjficinn to attempt the core
of it. Carolus Pifo, who endeavours to explain it; and the moft fagacious Laz. Riverius, afrer trying all the common methods, give us no better hopes of a cure.

It is now manifeft, why a loofeness, that in all outward appearance is one and the lame thing, and promifes to yield to the fame remedy, is vaftly different in the manner of curing it. Our experience has contradicted our belief; and the remedy that has prov'd effectual and fufficient in one cafe, has prov'd ineffectual and ufelefs on other occafions; on which account remedies are very liable to be mifapplied.

To prevent this misfortune, in a great meafure, for the future, Dr. Cockburn confiders the medicines commonly made ufe of by phyficians for the cure of a loofenefs; and how they may moft properly be adapted to that end: For, thus we mutt perceive the particular cafes wherein they are like to be ufeful. and when they are not like to be of any ufe at all. Aftringents, or binding medicines, were the firft employ'd for the cure of a loofenets, as well as of every other evacuation: But Hippocrates obferving that a loofenels was often the eaficft cured, when it was attended with vomiting, vomiting medicines were introduced on that account. On a like confideration, purging medicines were admitted by Celfus; becaufe he tound the purging the cure of itfelf; or that the loolenefs went off by going to ftool for a few days: But he advifes phyficians to take care that the loofenefs does not run longer than 7 days, and that it is not attended with a fever: For, in that cafe the loofenefs is not critical and falutary, but fymptomatical, and haftens on the ruin of the patient. All thefe obfervations have not been found univerfally true in many other countries : For, Celius Aurelianus, a moft accurate obferver of difeafes, Rbswes and Avicenna, blame this free ufe of purging and. vomiting; and this may be juftified by what thall be fhewn anon. But now that we may apply this artillery of phyficians againft the 2 general caules of all loofeneffes, the Dr. begins with the moft ancient of the mention'd merhods, which was prastis'd by Prodicus, Selymbrianus, whofe fchool was adorned by the divine Hippocrates. Binding medicines, as the Dr. obferv'd, were employ'd for the cure of every evacuation, and are ftill the refuge of phyficians, when all other methods have been baffled, under their own condnet and direetion; they tacitly have the preference given to all other medicines: Ifecacuanba, For inftance, is preferr'd to any other vomit, and rhubarb to any other parge; becaufe they are more aitringent than any VoL. IX. 9

33^{8} MEMOIRS of the

 other of the tribe. So far do phyyficians extol the power of aftringents, that many of them affirm, that any loofenefs may: be reprefs'd by them, if they did not think it unfeafonable or improper: However it may fland with thefe boafters, it is very certain, that thefe medicines only affeet a loofenefs oc-: cafion'd by a ftimulus; and if this be fmall, the loofenefs may be cur'd by it: But if the degree of the fimulus be greater, the aftringent medicine is either not able to put a ftop to it, or it will tear the patients with gripes if it do. It is on the fame account of a fimmulus, that a vomit or a purge is properly premis'd to other medicines, if it confift with the ftrength of the patient : But after all, the forehoufe of phyficians feemss to be exhaufted in curing a loofenefs that proceeds from indi geftion, or gall: But if the fimulus be from the piles, am ulcer, or a ftricture in the guts, phyficians are at a lofs for want of a remedy, and too frequently have recourfe to the omnipot. tent aftringent, without any fuccefs. Here is a real want, arn inability and unskilfullnefs in our work, and leaves too much room for milapplying medicines. But if we turn thefe enginess of vomiting, purging and binding, upon the other general caufe of a loofenefs, they either fall vety hort, or like a littlee water thrown upon a large fire, they rather inflame than ex-tinguifh it. Hippocrates, it is true, does not mention the watery loofenefs Coac. Prenot. 134. prodict. 81. but he fays: many things that peculiarly concern it; which Foéjins not un* derftanding blamed him for obfcurity in th is place: Pifo Sect? 4. cap. 1. Obf. 54. gives a very plain defcription of thiss loofenefs, and his oblervation is admitted by every fucceeding Phyfician. The defperate fate of the watery lootenels wass formerly mention'd from the confeffion of autbors of the greateft knowledge and veracity; and phyficians fhall for ever find that loofenefs to become more violent the more they prefs it with aftringents, vomits, or purging medicines. The boafted omnipoiency of putting a ftop to a lonierefs at pleature muft ferve another ufe with the patient ; tho' it may not be able to put the defir'd ftop to his parging. There is even a fingolarity in the cure of this loofenefs, which the Dr. thinks has not hitherto been obferv'd. In every other kind of loofenefs: the ftools acquire a confiftence, when they begin to be cured; but in the watery loofenefs, the ftools commonly leffen im 'quantity, tho' not in their loofenefs. The Dr. would fay fomething of opium, a medicine often made ufe of for the cure of every kid of lootenefs, but as it neither acts as an aftrin-gent, nor in a way obferv'd by phyficians, it muft fill remain among other defiderata.
An Account of a Comet Seen Feb. 29, 1731-2; by Mr. Dove. Phil. Tranf. ${ }^{\circ}{ }^{425}$. P. 393.

THE 29. of February, at about $\frac{\pi}{2}$ an hour paft 10 at night, as Mr. Dove judges (having had a good obfervation at noon) they were in Lat. $34^{\circ} 28^{\circ}$ fouth, and Long. 12° 35^{\prime} W. from Cape $\mathcal{B o n n e} E \int$ perance, the moon fhining very bright, being near the full, they obferved fomething very bright rife about the weft, paffing from weft to eaft in about five minutes between the moon and their zenith, and to the fouthward of Spica virginis; it carried a frream of light after it about 40° long, and x° or 1° and $\frac{x}{2}$ broad : The brightnefs of the moon outhone the comet as it came near her.
Trwo Experiments of the Frictions of Pullies; by Dr. Defaguliers: Phil. Tranf. Nio 425 P. 394.
THE firf experiment was made with a tackle of five brafs-fheevers in iron frames or blocks; that is, three Sheevers in the upper block, and two in the lower.

Having made an equilibrium by hanging one hundred and a quarter at the lower block; and a quarter of an hundred at the running rope; he added 19 pounds and a half before the power could go down and raife the weight.

Exp. 2 Two hundred and a half being balanced by half a hundred, the addition of 28 pounds made the power raife the weight.
N. 'B. The fheevers were five inches in diameter, the pins half an inch, and the ropes three quatiers.

In the firf experiment 17 pounds and a half exceed by four pounds and a half the fum of the frictions deduced from the theory: But in the fecond experiment 28 pounds exceed the fum of the frictions but one peund.

The reafon of this appeared to be, that the rope at firft was too big for the cheeks that held the fheevers: But in the fecond experiment, where the rope was more ftretch'd, it was fomewhat diminifh'd in diameter; and confequently brought off from rubbing fo hard againft thofe cheeks.
From knowing the quantity of friction al priori in fuch large tackles, we may know what to expect in practice: For, if one man, who for a fmall time can exert the force of one
hundred pounds, thinks that he may draw up a fone, or a_{2} roll of fheet-lead, or any other fuch weight to the top of a2 houfe with a tackle of five (becaufe this would feem feafible from mechanical principles.) will find himfelf miftaken on account of the friction, which will not be furmounted without an additional force of 50 pounds.
Fartber Experiments concerning Elecricity; by Mr. Stephenn Gray. Phill Trant. No 426 . p. 397.

ABOUT the latter end of Auguft 173_{2} (Mr. Gray be-. ing at Mr . Wheeler's) after having repeated the experi-ment of making fulphur attract leaf brafs in vacuo (Mr.. Wheeler having a very good air pump of the larger fort, made by Mr. Hauksbee) they fufpended from the top of a receiver, which was firft exhaufted, a white thread that hung down to about the middle of the fame: Then the receiver being well rubbed, the thread was vigoroufly attracted by it: when it was at reft and hang perpendicular, the tube was rubbed, and being held near the receiver, the thread wass attracted towards that fide of it : If the tube were removed nowly, the thread returned to the centre of the receiver; but when mov'd fwiftly, the thread was'attracted by the op.. pofite fide of the receiver: If the hand were held near the receiver, and mov'd haftily from it, the thread was attracted! by the oppofite fide, as before. This feemed at firf difficultt to be accounted for; but upon farther confideration they con.cluded it proceeded from the motion of the air made by the: tube; and in the other cafe by that of the hand, which took: off the attraction from that fide, and not on the other fide:: So that as Mr. Wheeler very well expreffed it, by this meanss the balance of the attraction was taken off.

They made another experiment by fufpending a thread on the top of a fimall receiver, and whelming a large one over: it : Then by firt rubbing this, and holding the rubbed tube near it, the thread in the middle receiver was attracted to that fide of it where the tube was held.

An experiment thewing that attration is communicated thro' opaque as well as tranfparent bodies, not in varuo.

There was taken a large hand-bell, the clapper being firft taken out, and a cork fufpended by a thread from the top of the bell, the cork being fmear'd over with honey: Then the bell was fet on a piece of coach glafs, which had been well subbed, on which the leaf brafs was laid: Then the tube be-
ing rubbed, and held near the handle of the bell, and afterwards near the top and fide of the fame, the bell being takeni off, there were feveral pieces of the leaf-brafs flicking to the honey'd cork, that had been attracted thereby: It likewife appear'd that fome others of them had been attracted by the bell, being removed from the places they were left in, when covered by it.
Some time after Mr. Wbeeler told Mr. Gray of an experiment he had made in vacuo, when the latter was gone from him. He took a fmall receiver and in it he fufpended a thread, and over this four other receivers all exhauited, and the thread was attracted thro' all the five receivers, and he thought the attraction was rather ftronger than before, when a fingle receiver only was made ufe of: But inftead of wet leather, he made ufe of a cement Mr. Gray had recommended to him, viz. bees-wax and turpentine, which was what Mr. Boyle made ufe of in his experiments with the air pump, and that, as Mr. Gray told Mr. Wheeler, it was his opinion the attractions would be much ftronger, the fteams of the wet leather taking off fome of the attracting force.

Mr. Gray proceeds to give fome account of the experiments made at Mr. Godfrey's ; the firt of which was giving an attraction by the tube to a boy fufpended on hair-lines, and that by the intervention of a line of communication, the attractive virtue paffes to another boy that fands feveral feet diftant from him. But before he go any farther, he gives an account of that experiment of the aftractive power that is communicated to the boy ftanding on rofin.

Fune 16. 1731, in the morning, Mr. Gray took two pieces of white rofin made into round flat cakes of fomewhar more: than eight inches diameter, and two inches thick. Thefe were laid down on the floor of his chamber fo near each other, that the boy might fand with one foot upon one cake, and with the other upon the other cake of roin: Then the leafbrafs being laid under his hands, the tube rubbed and held near his legs, caus'd both his hands to attract and repel the leaf.brafs to the height of feveral inches: Or if there was laid leaf brafs under one hand, and the tube beld near the other, there was an attraction communicated to the farthe: hand'; and when the tube was applied either to his hands or feer, there was an attraction communicated to his cloaths: So that a piece of white thread being held by one end, the other end would be attracted at near the diftance of a foot: Sos

34^{2}

MEMOIRS of the

that the attraction is altogether as flrong, if not ftronger than when the boy was fufpended on hair-lines.
Now as to the firft experiment at Mr. Godfrey's : One of the boys being fufpended on the hair lines, and the other ftanding upon the two cakes of rotin, the boys holding hands with each other, under the boys hand that ftood on the rofin was laid the leaf-brafs; then the tube being rubbed, and held near the boy's feet that hung on the hair-lines, the hand of the boy that ftood on the rofin attracted ftrongly. Then there was taken a four foot rule and given the boys to hold by each end; and there was the lame virtue of attraction commuricated to the other boy as before. After this a line of packthread was given them to take hold of by the ends; and there was an attraction communicated from the one end to the other, with as much vigour as by any of the other methods before-mentioned. This experiment was made Sept. I 3, 1932.

Sept. 14. Mr. Gray firf made the following experiment: There was taken a rod, compos'd partly of wood and partly of cane: It was 24 foot in length, and in form not unlike two fifing rods fuppofed joined together at their bigger ends. This rod was fufpended horizontal by two threads of filk: Over this about two foot from the ends was fufpended a fmall hazel wand, about five foot long, at right angles to it, but not touching the rod: Then going to the other end of the rod, the tube being excited and held near it, repeating the fame three or four times as ufual, and goirg to the hazel wand with a fmall white thread, he found that it attracted when heid near any part thereof. The next day by Mr. Wheeler's and Mr. Godfrey's affiftance he repeated the experiment; and they found that by fufpending the wand at feveral heights, there was anatraction, when it was at the height of more than 12 inches. He now gives fome account of his sepeating, and what farther improvements he made to fome of the experiments fince his return to London.

Sept.29. He repeated the experiment on two boys; firlt fetting one of them on cakes of rofin, and the other being fufpended on the hair-lines, and the effect was the fame as bas been above related. He then caufed both the boys to dand on cakes of rofin, giving them to hold a piece of a Spanifb cane fifhing rod that was 8 foot long; the one boy holding one end, and the other the other end of the rod; then the leaf-btafs being laid on the fland, and one of the boya holding
holding his hand over it; Mr. Gray went to the other boy, and the excited tube being held near the palm of his hand; the firft boy's hand attracted and repelled the leaf-brais ftrongly. Then there was a piece of packthread given thenm to hold by each end, about the fame length with the rod, viz. eight foot long. Under each of their hands was laid leaf-brafs, then going to the middle of the line, holding the tube near it, the farther hand of both the boys attracted the leaf-brafs with fo much vigour, that it is not to be doubted that had the line been much longer, they would have attracted at a far greater diftance. He then caufed the boys to ftand on the cakes of rofin; fo as to let the flaps of their coats touch; and then by holding the tube to one of their hands, the other hand attracted, but not with more force than when they were diffant the length of the line: Then they ftood fo much farther as not to let their coats touch by about an inch; and then exciting one of them to attract, the other did not receive the leaft degree of attraction: He then bid one boy put his finger upon the other boy's wrift, whereupon he immediately became electrical.

OEt. 4. He made the following experiment: A filhing rod, of about ro foot 8 inches long, being hanizontal; and over it towards the leffer end, a fmall rod (being the top end of another firhing rod) at the leffer end, which was whale bone, there was put on a ball of cork two inches diameter, the fimall rod touching the large one; then the tube being excited, and held near the great end of the large rod, applying it as ufual : Then going to the cork with a pendulous thread, he found it attracted it at the diffance of at leaft two inches. Then the rod was moved higher (fo as not to touch the end of the long rod) about an inch by eftination; and after feveral trials there was a vifible attraction, when the little rod, that carried the ball, was 34 inches above the large one.

OCt. 5 . He took a line of packthread it foot 4 inches long, with filk lines tied to the ends of the packthread ; one of thein about 4 , the other 2 foot long, near 2 of the oppofite corners of his chainber, where in each of them was driven a hook at about 3 foor and $\frac{x}{3}$ high, to which the ends of the filk were faftened, drawn fo tighe as to bear the packehread nearly horizontal: Then the fmall part of the fifhing rod was futpended over the packthread at about 4 foot from the end; then the tube being applied to the other end of the packthread, the cork ball at the end of the little rod was attractive, and at feve-
ral removes, to the height of 47 , inches, there was a vifible: atraction of the pendulous thread. sec y 4 han.

OCF 6. Inftead of the friall rod he took a pack thread about 4 foot long, and having tied filk threads to each end, by which the thread was fufpended over the longex lipe borizontally, and at rightanglespeardy to the faid line, which was by twing the ends to perpendicylar lines of packthread, that were faftened to hooks at each end, and had niding knots of then, for that the crols line might be mov'd higher or lower as there was occafion for it : Upon one send of this line be put a dan of cork, and found, that when the firt line had been excited, the wirtue wass carried up to the fecond line, and caus'd the cork ball to atract:: He then took off the cork ball, and put one of ivory in itss place ${ }^{\text {a }}$ and this atracted after the famemanner : Afterwards he bung two ivory balls, one at each end of the line and fuund there was a fenfible attraction, when the line that fupported them was raited 38 inches above the line of communication.

OEF 30. He repeated this experiment; and now when thee line that fupports the ivory balls was elevated about naninch above the communicating line, eirber ball attrated the thread att she diftance of more than a femi-diameter of the ball, iand ati the height of 10 inches, at leat half the fame diftances bor.

By thefe experiments we find, that the electric witue mayy not only be carried from the tube by arod or line to diftant badies, but that the fame rod or line will communjeate that yircuee do amother rod or line that is at a diftance from it ; and by that other rod or line the attractive force may be carried to otherr diftant bodies.

A fmall hoop of about 20 inches in diameter, and x inch and $\frac{x}{2}$ in breadth, being fufpended by 2 threats off filk. fo that itt hung perpendicular, and in a plane at right angles to the horizontal line of communication, which paffed thro or at leaft very near to the centre of the hoop, he went to the end of thee faid line and applying the excited tube near it, there was am atractive infuence communicated to the hoop in all parts of it : Then by a frew-hole made in the fide of the hoop for that purpofe, he frrew'd it upon the top of a pedeftal that was about 2 foot and $\frac{1}{2}$ in height, fetting it upon a cake of refin; to ass that the beforementioned line might pals thro' the centre of the hoop; and he found that whether the hoop was placed to; as that is plane was at right angles, or in any other angle with the line of communication, the honp attracted after the fame man ner, as it had done when fufpended on the filk lines.

Royal Society.

Some time after he made the following experiment: Into the note of a glafs-funnel he put the larger end of the top of a fmall fifhing rod, and upon the leffer end a ball of cork : Then the funnel was fet on the floor of the room; fo that the rod was at fome inches diftance from the line of communication: Then the tube being excited, and applied near the end of the line, the electric virtue was convey'd by it to the cork-ball; and it attracted ftrongly when the ball was, by eftimation, not lefs than 2 fout diftance from the aforefaid line.

Dec. II. There being a hard froft, and a fair day, he repeared the experiment, making ufe of a large hoop that was about 40 inches diameter, and fetting it perpendicular upon a hollow cylinder of glafs, which was 6 inches long, and 5 inches and $\frac{x}{2}$ in diameter; placing the hoop in fuch a manner that the line of communication might pafs thiro', or at leaft very near, the centre of the hoop: Then applying the tube to the end of the line, there was an atrraction communicated to all parts of the hoop, attracting a pendulous white thread at the diftance, by eftimation, of about $\frac{\frac{t}{2}}{}$ an inch: He then fet the hoop in fuch a manner as that the internal furface of the hoop might touch the line; and then communicating an attraction by the excited tube to the packthread, its attractive virtue was carried. by it to the hoop, and caus'd it to attract with fuch force, as with the remotef part of the hoop to attract the thread at a diftance, by eftimation, of about 4 inches.

Some time after, he made the following experiment : The large hoop bing fet upon the glafs cylinder, and the packthread paffing thro' or near its centre, the tube being applied near the hoop gave it fuch a ftrong attraction, that is would attrak a thread at the diftance of 9 or 8 inches, and at the fame time there was an atrection communicared to the packthread : Then he fulpended an ivory ball of 2 inches diameter at the other end of the packthread, and applying the tube to the hoop, there was an ätractive virtue carried to the ball, and it wnuld attract the pendulous threal at the diflance of niear an inch. He then placed the ball in or near the centre of the hoop, and now, it was fo far from being attrakted, that it was repell'd by the ball, but attrakted by the pack thread, paffing to it in the arch of a circle, whofe sentre fetmed to be thas of the b_{i} Il.

The Sequel of the Meteorological, \&c. Obfervations at Utrecht, for the Year 173°, by M. Mufchenbroek, Phil. Tranf. $\mathrm{N}^{0} \cdot 42$ 6. p. 408. Tranjated from the Latin.

WERE philofophers to apply themfelves unanimoully to obferve and fet down their obfervations of meteors all over the earth, we fhould foon have a compleat hiftory of the annual, variable and conftant winds and monfoons: For, whoever would compare together thefe journals, would manifefty difcover the origin of each wind, the tract it had pafs'd" over, and where it had ended: He would alfo fee, how clouds, carfied by winds towards fome parts, were comdenfed by contrary winds, or by other clouds mixing with them, and generated from different parts of the earth, and how they fhould produce rain, heighten new winds or add ftrength to them, caufe effervefcences, and produce thunder and lightning; the caufe of all which, we now either guefs at, or are ignorant of : He would likewife fee the frame and conftitution of the whole atmofphere; of which we hitherto fcarce know any thing for want of oblervations. But it is matter of regret, that very few Jearned men take the pains of compiling fuch fort of journals, as there can hardly be any light and advantage drawn from comparing one or two journals together: The ingenious Dr. Furin has, it is true, by his invitation for making mefeorological obfervations, excited fome, who have chearfully undertaken this task : In the AC. Erud for 1730 , there are very accurate meteorological oblervations, which compared with M. Mufchenbrook's shew, how much the atrofphere varied at Leipfic and at Utrecht on the fame day"; how different the winds were, and how much greater the gravity of the armonphere was in the one place than in the other : But to xeturn; Fanuary was exceeding moderate as to cold, and had leveral fine days: It freezed; but at the coldeft, the thermometer only fell to 18 degr. and but noce on the 25 . the mercury in the barometer was at 29 inches and $\frac{1}{2} \frac{2}{2}$, which is fo confiderable a height that M. Mufchenbroek does not remember to have ever obferv'd a greatef. The fly being fo fair and ferene, and fubject to no confiderable or fudden changes of hear, had almoft banifh'd all kinds of diffempers, except the finall pox, which were of the confluent kind, and malignant, and of the nature of thofe mers ${ }^{3}$ tion'd at the latter end of $1 / 29$; yet fewer died of them. He left the magneric needies in the fame flate as the preceeding yeary
year, being unwilling to impregnate them with new virtue, by drawing them over the magnet: The magnetic virtue, continu'd pretty vigorous for the whole year in the inclinatory needle; what happen'd to the declinatory one in May, fhall be fhewn anon.
The greateft inclination this month was $73^{\circ} 25^{\circ}$; the leaft $72^{\circ} 45^{\circ}$. The greateft declination was $13^{\circ} 2 \mathbf{I}^{\prime}$, the leaf $12^{\circ} 5^{\circ}$.

February was pretty wet, moderately cold, with few northerly winds; there were no confiderable or fudden viciffitudes of heat or cold in the atmofphere, whence the number of the fick was very fmall : Yet the fmall pox of the confuent kind continu'd, but lefs malignant than the former. On the 'I 9 , at 10 in the evening M. Muccbenbroek difcover'd an aurora borealis, or a bright cloud only that fhot forth no radiations: But as it had nothing uncommon, he did not take up much time in oblerving it. In Pbil. Tranf. $\mathrm{N}^{\circ} .413, \mathrm{p} .279$. an aurora borealis of a very calm light was obferv'd the farne day at Geneva, and a elegant defription of it communicated to the Royal Society.

The greateft inclination of the magnetic needle was $94^{\circ} 10^{\circ}$; the leaft $73^{\circ} 15^{\prime}$ The greatef declination was $14^{\circ} 6^{\prime}$; the leaft $13^{\circ} 8^{\prime \prime}$.

March was exceeding rainy. The mercury in the barometer was generally low; yet there were no itorms, for which this month is otherwife remarkable: There were very few northerly winds ; hence the air was healthful, fcarce conveying or diffeminating the feeds of difeafes: And now the frall pox became milder; and here and there the difting kind; nor were the confluent fo rife, or fatal as in the preceeding months. On the 6th at 8 in the evening, M. Mufchenbroek obferv'd an outro'ce borealis; it was fmill. A little cloud in the north 10 degrees abave the harizon, terminated by an uneven faperior lin's, white above and blacker below, enitted fome fhining fhort rodss . fcarce 30 degrees, above the horizon, fucceeding each arher; yet at a confiderable diftance of time: At to o'clocir there was no trace of it.
The greatef inclination of the magnetic needle was 95°; the leatt $66^{\circ} 15^{\prime} \circ$ Yet here fomething extraordinary happened, for, the greateft inclination on the 25 th being 75°, the day following it was only $66^{\circ} 15^{\prime \prime}$; yet there was no afignable caufe for this difference; and this inclinatory
needle is of fuch a nature and goodnefs, that if it be mov'd out of its fituation, in an hour it will again fhew the fames degree of inclination: He was more farpris'd at this difference of inclination; as the other needle that hews the declination, only exhibited the difference of one minute. How many things then in magnetics fill remain to be clear'd up by pofterity! Amongf all the obfervations made this month on the inclinatory needle, he obferv'd confiderables variations; but thofe in the declinatory needle were the feweft of any month.

The fucceeding April was pleafant and moderately dry; by whofe genial heat both trees and plants budded, which gave great hopes of a plentiful harvefts twice thofe plentifull thunders roared, and once an aurora borealis appear'd exhibiting nothing uncommon. Again the finall pox were nott fo rife Vernal intermitting tertians made their appearance as ufual; neither obitinate nor malignant; nor common, and without unufual fymptoms. Here and there he obferv'd peripneumonia's, but they were favourabie, and fometimess went off fpontaneounly, and fometimes they requir'd venifection and medicines: Very few died of them.

The greateft inclination of the magnetic needle was $720,30^{\prime}$; the leaft $68^{\circ} 45^{\prime}$. The fame prodigy happened this month as the tormer; namely, the needle rerurning from the greateft inclination to the leaft on the following day, whift The declinatory needle was farce affected. The greatent declination was only $-1^{\circ} y^{\prime}:$ the leaft $12^{\circ} 46^{\circ}$. The compafs zeedle this month had a confiderable retrograde motipn.

Thunders were very frequent in May, and fcarce at any other time more fos May is always productive of thunder in thefe parts. For, the earth being conftringed by the cold of the preceeding winter can fcarce tranfpire the oils, fulphurs and fales contain'd therein' as foon then as it is opened by the heat of Aprif and May, there rife plentifully into the air ofeaginous faline and orher different exhalations; which mixed together, produce an effervelcence, are fet on fire, and caufe thunder and lightening.

In the beginning of the month the winds were northerly; upn which there immediately a rofe angina's and coughs : All the aigina's were of the inilammatory kind; the almonds of the ears were exceedingly fwell'd and red; nor could they be cured without plentiful repeated venifection, cathartics, fomenta-
tions externally applied to the faiuces, gargarifms, and diluent potions: this wind likewile made tertians nore rife, than which there is no greater enemy to the human body: The fmall pox ftill continud, but milder and fiot fo rife.

The greateft inclination of the magnetic neetle was 72^{25}; the leaft $90^{\circ} 45^{\circ}$. He obferw'd the declination till the 19 , on which it thunder'd at in in the forenoon, he oblerv'd the thunder pafs over the houfes, but fo high in the air, that he expected no execution from it. At is he came to oblerve the ceclination of the magnetic needle ; upon taking off the cover he was catled away , in this time there was a frall hower of ram, which fomewhat wetted both the glafs that covers the box and the needle itfelf; having carefully wiped the needle he pur it upon its pin, when it became paralytic, as if were, and diveted of its magnetic virtue, and continued at ref in what lever fituation it was put; he drew it along a generous magnet, But it could not be excited, tho' he took ware not to direct it fowards any point to which other needles liad been drawn He politho and cleaned the cavity of ts pivor, repeated the application of the needle to the magnet, batall to no purpofe, and his accident caufed a gap th this obfervations Whether this effect proceeded from the thunder, he does toot take upon him to affirm ; but it happen'd at that time; and if it totich'd the needle, it may in fome meafure be explain'd from the analogous oblervations, M. Mufcbenbroek colleeted in his differtation on the nagnet. There were but few fair days in fune ; the weather was very moderate : Hence acure difeafes were very rare, intermitting tertians flill continued, but pretty favourable, and were very eafily curd; and now the fmall-ponx, that had raged upwards of a year, were very rare: The greateft inclination of the magnetic needle was $74^{\circ} 31$; the leaff $\mathrm{I}^{\circ} 50^{\circ}$.

Full, was very rainy, and not above a day or two of it fair: The heat was much lefs than is neceffary to ripen the fruits of the carth. The fields were all under water; and fuch as were never before cover'd with it now look'd like a fea, and were foot under water: The Lecca would have overlow'd the dykes, had it not been for the care of the magiffrates: Now the husbandman began to defpair of his harveft, and anxioufly look out for the higher pathure grounds for his cattle. Yet this month was not every where to rainy; for, from Ricbter's obfervations at Leipfsc, it appears they had feveral fine days; as they allio had in Friance: And however wet July was;
yet it did not produce any difeafes, and generally this month finds little employment for phyficians.

The greateft inclination of the magnetic needle was $77^{\circ} 25^{\prime}$; the leaft $72^{\circ} 15^{\prime}$.
The beginning of Auruft was likewife very wet: Both apples and pears rotted from the trees, of which there was a great ficarcity in the diocefe of Urrecht: whist wretched corn wass there, the fmall grains of wheat yielded a great deal of bran, but little meal; and the greateft part of it continued growing by reafon of the continual rains: And this corn could hardly) find buyers: Intermitting tertians and quartans began like thee autumnal, but were pretty favourable: There werelikewife fimple fynochi, which exnibited no peculiar fymptoms, not had any uncommon periods. The greateft inclination wis $96^{\circ} 30^{\circ} ;$ the leaft 70°.

Sept. was again ratiny; yet there were fome fait days in thee beginning ; but none after the 12 th. Or the roth appeard am aurora borealis from io till it oclock, that emitted brightt rods from a cloud in the north, fcarce raifed above the horizon, and exhibited nothing uncommon.

Now feveral intermitting tertians and quartans were obferv'd and thofe not unkindly; befides, as the heat was moderate; there hardly reigned any other acute diforder.

The greateft inclination was 70° з 30°; the leaft $69^{\circ 0^{\circ}} 15^{\circ}$.
In October the air, it is true, was deprived of the greateit part of its rain, but colder from the earth's being drenched the: foregoing months, there were likewife few clear days. Hence the arapes didnot ripen in thefe parts; but it happen'd otherways in France where the months of Sept. and OEF. being prettys warm, grapes ripen'd very well, and yielded very generouss wine, and preferable to any of the preceeding years. Theree were likewife few diftempers this month; only fome fimple and double tertians, as alfo quartans, but they not obftinate.

There was a deal of rain in November, yet the cold was moderate: And becaule the whole year was wetter and colder than ordinaty, the oxen were very brik and lively, in the paftures, became very fat; as din- alfo all forts of birds, fovil and will game: So that the hofs of fruit was made up by the fatnefs of the oxen. On the the and for day M! Nufchenbrodke obieve'd an abroraboreales, that exhibied nothing uncommon Thefe were the 2 lata durota's of this yeas, fot trat they hone fix rimes : He obleved by viewing allo of tem, that they are no-
ways affected, whatever winds do blow, or from whatever quarter they come. But fince at firft they always appear in the north, and from thence are carried towards the fouth, the matter of them floats higher in the atmofphere, than where the lower winds do reign: Aurore boreales are carried from north to fouth; and that doubtlefs by the wind of the fuperior region of the atmofphere, which blows in that direction.

Now the inclinatory needle was moft deprefs'd under the horizon, forming with it an angle of $69^{\circ}-30^{\prime}$; and leaft deprefs'd, with an angle of $68^{\circ} 50^{\prime}$.
In Dec. there was obferv'd a fudden change of the weight of the atmofphere : For, on the 22 d at night the mercury in the barometer ftanding at 28 inches $\frac{s}{i}$, in the morning afcended to 29 inches and $\frac{\frac{x}{2} \text {; which change happen'd within the fpace }}{}$ of 8 hours.
The greateft inclination was $69^{\circ}=5^{\prime}$; the leaft $\sigma 7^{\circ}$.
The latter half of the year the air was very healthful; fo that difeafes were few, and as few people died; nay, the greateft mortality was by the fnall pox for the firf fix months of the year.
The quantity of rain that fll this year was 33 inches 5 lines and 4 perpendicular height : and only 28 inches i line and $\frac{5}{3}$ evaporated; fo that there fell more rain than was evaporated, which very rarely happens; but this was owing to the cold and wetnets of the year.
The Seaul of the Regifer for tbe rear 1731 ; by the fame. Phil. Tranf. No. 426 . P. 417. Tran atited from the Latio.
f Anuary, brought a moderate cold along with it: What cury in the barometer was exceeding low, and the wirfrutberly, but gentle. At this M. Mufichenürock was fur winds fince he feldom or never obferv'd a froft begin, when the bare merer was to low, and fuch winds blowing; his curprize ceas'd when he heard that there had been great forms on the coafts of Spoine and Portugaly that had caus'd leveral fhipwrecks; the wind in thole parss being foutherly, and alfo reaching as
far as tar as cur coafts would have exerted its force upon our atmot. proceeded not a north wind direaly oppos'd it ; and hence forces deftroy each crher: And cither the fouth or porth wind

MEMOIRS of the

was obferv'd to blow as the one or the other prevailed: With what referve then muft we judge of the future condition of the atmofphere from the height of the mercury in the barometer. For, on the $=6 \mathrm{th}, 27$ th, and 28 th of this month it thaw'd, tho' the mercury was very high, and the wind eafterly = So that the anomalies of the barometer are hardly credible.

There were fome inftances of the finall pox, and thefe generally of the diftinet kind, of which a few young children died. From the middle of Fanuary pleurifies began, which only feifed the labouring and country people; which were of a more kindly nature, and feldom tending to fuppuration.

There were alfo double tertians, which were foon and happily cured by the ufe of the falts and bitters only.
Coryza's immediately enfued the thaw : This month the Lecca was pretty low. And now M. Mufiljenbroek had procur'd fume new fea compaffes, in order again to oblerve the declination of the magnet: He had left an inclinatory needle to itfelf, that he might obferve whether the magnetic virtue, communicated to it, 2 years before, ftill continued vigorous: And he found that the virtue was exceedingly diminif'd this year; fo that he thought proper in Dec. to draw the needle again along the magnet; upon which it had much greater inclination; yet he fufpects that it retain'd its virtue pretty well till Fune. From thefe difcoveries M. Mujchenbroek thinks, that common fea-compaffes can never be fafely depended on abnve 2 years, without touching.

The greatef inclination this month was 68°; the leaft 69° 20^{\prime} : The greateft declination was $14^{\circ} 55^{\prime}$; the leaft 14° I 15^{\prime}.

February was attended with a lafting, but moderate, froft; it began on the ad, and continu'd without interruption till the clofe of the 21. After the 6 th, the mercury till on the 8th and 9 th it came almoft to its loweft fation; the iky, however, ferene, the winds gentle, from whatever quarter they blew, and the frof continuing. But as the year began with fuch irregularities, it inclined to continue in them. On the night of the sth day there was much lightening; in other cities in Holland there were torrible thunder peals, efpecially over Almeria: On the 12, between 6 and 8 in the evening there fell a great quantity of frow, is inches deep, intermixed with very Imall and fine rain: M. Mafchenbroek never nbferv'd fuch a prodigious quantity fall in thele parts in fo fhort a time: The melted foow yielded $=0$ lines of water; confequently,

Royal Society.

quently, this fnow was only nine times rarer than water: This happened on the night preceeding the moon's quadrature: The Lecca was froze over: After the 20 th there was a very gentle thaw, which happily diffolving the ice of the rivers, the dykes fuftained no damage.

During this cold almof all diforders lay hafted; only the fmall pox of the difinct kind prevaited, they were favourable, fcarce carrying off any one. A great fall of fnow, with the northerly winds following thereon, flter the X 2 th, caus darthritic pains which would have been more fevere, had either the cold been greater, or the northerly winds continued longer, but the more kindly foutherly winds gave no fmall relief in this ditorder. For when the frof had for 18 days together without intermphon confringed the bodies of men? the perpiraton was hindered And hence a diarrbeed which did not ceafe till the fuperfuous matter in the body was thrown off, and a free perfpration reftored: The feedieft remedy, therefore, was a itrong catbartic: and then a gentle fudorific. But others were feifed with an inflammatory angina, rather more lafting than dangerous, it was foon removed by venifection, and ef pecially by repeated cathartics. After it began to thaw, and the air became moit, with rain, there arofe coughs, by the moifter: foutherly winds very much selaxing the veficles of the lungs; fo that the laxer and too patent mouths of the exctetories Iodged here a great quantity of phtegm, which muft be thrown off by coughing

The greatef inclination was $68^{\circ} 30^{\prime \prime}$, the leaf 68° : The greatef teclination was $14^{\circ}=20$. the leat $13^{\circ} 45^{\circ}$.
in Maw b the winds were generally northerty, which equally affected amals and vegetables And hence arofe teveral diforders, as prthitic pains, pleurifies, adde coitinual fevers, intermitting teftians, quartans and the fmall pox : After the 14 th he oblerved that Huch as were phrhifical became much worfe, with great anxieties, for which he could fufpee no other caute than the foregoing lafing northerly winds?
On the 7 th in the evening he oblerved a mall aurora borealis, anf without any thing uncominon,
The greatef inclmation was $69^{\circ} 15^{\prime \prime}$, the leati $68^{\circ} 20^{\circ}$: The greatef declination was $44^{\circ} 50^{\circ}$, ble leaft $13^{\circ} 30^{\circ}$. Between the sth and GTh the diffrence of dectination was equal to $x^{\circ}{ }_{3}$ the moclinution coninulng 3nvariable.

Aprib was dry, exceeding cold, infelted with notherly winds, an I tackward: Hence, tho this month was over, no Voi. IX. 9 X y
tree-had hitherto budded; about the clofe of it apricots began to blofforn, but they were nipp'd by the cold; after this the peaches loft their bluffoms, and fuffered much by the cold; yet the remaining fruit was the better for it.

And now difagreeable and cold northerly winds caus'd more frequent arthritic pains; there were fimple and double tertians, like the vernal, but more rife, tho' noways malignant or obftinate.

The greatef inclination was $70^{\circ} 40^{\prime}$; the leaft $68^{\circ} 45^{\prime}$: The greateft declination was 16°; the leaft $14^{\circ} 25^{\circ}$.

May in the beginning was unpleafant and cold; but on the $5^{\text {th }}$ in the afternoon there happened fuddenly a very great alteration, by warm Showers of rain rendering the air milder: Hence on the following days both leaves and bloffoms broke out in abundance, had not very cold nights from the 10th to the 15 th nipp'd every thing again: Hence pulfe were prevented in their growth, the earth being covered every night with a thick cruft of ice. After it had thunder'd on the 18 th, the weather began to be milder. On the sth day from the fudden change in the atriofphere, from cold to hot, there immediately came 'on angina's, which yet were flighter and went off fpontaneoully: The day following he obferved colic pains without fevers, which in the night time affected the moft healthy: M . Nufchenbroek could affign no other caufe for this than the fudden viciffitude of heat and cold; he fhould have overlooked this diforder, had not he, upon vifiting his patients. that day in the morning, heard the firft 4, who lived in different houfes, complain of thefe pains; and then fufpecting that this diforder was owing to the air, and that there was a flight infemmation of the inteftines, he thought proper to open a vein, and this prov'd very fucceefful; and in fuch patients as he ornitted venifection, prefcribing only hot fpirituous potions with apium, the diforder continu'd for 3 days, and was not removed without venifection and diluents. At the fame time there were hoarfenefs and coughs, without a fever, and thefe were heighten'd after mid inght ; they proved very obftinate, withour yielding either to venifection, cathattics, fudorifics or lenitives, and they requird a longer time, as alfo preparations of honey, and opiates.

On the 14. there appeared a lumen boreale, which exhibired nothing, but what had been feveral times offerved before. The greateft inclination was $72^{\circ} 50^{\prime}$, the leaft 68° : The greateft declination was $16^{\circ} 13^{\prime}$, , the leatt 5°.

In flune he obferved fimple fynochi, without any malignity; they were, thereffore, eafily cur'd by a plentiful venifection, together with nitrous, diluent, and cooling, potions. The fmall-pox were the mildeft that ever were feen : They were of the diftinct kind, few in number and fmall; with thefe fome young children had little or no ficknefs, and were not obliged to keep their beds; and now on the 6 th all the puitules fuppurated, and they quite dried up on the gth. But there were very bad coryza's, that continued very long, by reafon of the great variety of weather: For, if one day was very hot, the next following would be very cold, and this was caufed by northerly winds. M. Mufcbenbroek fufpeets that all the inclinations of the magnetic needle from this monch till December were lefs than they fhould have been from the dimination of the magnetic virtue by length of time. The greateft declination was 16° 30^{\prime}; the leaft $15^{\circ} 50^{\prime}$.
On the $24^{\text {th }}$ of Tuly there were fuch terrible flafhes of lightning, with fuch loud peals of thunder, that M. Mufchenbroek never faw nor heard the like; they began at $\frac{3}{3}$ an hour after 4 in the afternoon, and ended at $6 ;$ yet they did not do much damage to the city; only here and there fome ftones were thrown down from the chimney heads, tiles from the houfes, and 2 trees near the city were rent, and fome of the bark peel'd. off, where the lightening had run along it: A citizen, who had taken thelter under one of the trees; was thunder ftruck.

Now for the whole of this month the weather was mild, moderate, ferene, and forward: Hence there was a fruifful harveft, that made amends for the fcarcity of the foregoing year : So healthful was the feafon, that fcarce any were ill. The greatelf declination was $16^{\circ} 10^{\prime}$; the leaft $15^{\circ} 40^{\prime}$.

Auguft was exceeding hot; but the weather fo mild, favourable and healthful, that men could not wifh for a better: Hence there were very few complaints : Fruit this year was very good and fo plentiful, that it fcarce bore any price.

The greateft declination of the magnetic needle this tnonth was ' $16^{\circ} 5^{\prime}$; the leaft $15^{\circ} 35^{\prime}$.

In September the weather was likewife moderase and mild, infefted with few northerly winds: It produced inflammatory mitting tertians and quartans, yet lefs in the city than in the country: Thefe were of the autumnal kind, which neither yielded to lixivious falts, or bitter antife brils: But M. Mufcben-
br broek happily cur'd feveral patients with a vomit; fomeimes I y
repeat-
repeating it twice, and then giving a bitter decoction for a few days; and after that the bark; by which method the augina was entirely removed, and that without any relapfe.

The greateft declination was $15^{\circ} 55^{\prime}$; the leaft $14^{\circ} 20^{\prime}$.
OEtober was very fertile in aurore boreales; for, there were five in that month. On the third, from 8 in the evening till after x_{2}, the fky being exceeding calm and ftill, there appear'd a large lumen boreale, that flowly emitted its columns from the horizon to the zenith; thefe columns lafted for a very long time uninterrupted by any wind.

On the pth a large aurora borealis illuminated the whole heavens with a light exceeding that of the moon in her quarters; at 70° clock it began in the north eaft, but it alfo gradually fpread to the weft; fo that at the fame time it fhone thro' the tract of the heavens from north eaft to weft; and fo far it extended at if o'clock: Near the horizon the fky was overcaft with a white cloud, denfer than that it could tranfmir the light of the fars: From this cloud there fometimes arofe a part like a column, and fometimes a part of the cloud was broken off, of an unequal figure; which thus divided Shone, and mov'd flowly to the zenith; for, there was no wind near the furface of the earth; and befides, it exhibited nothing particular.

On the 8th in the evening there again appear'd an aurora borealis in the N.E. There were feveral interrupted, fmall black clouds, over which ftood others pellucid, fhining and without motion, that emitted neither rays nor columns: Two winds blew at the fame time; the higher, a northerly, and the lower, a foutherly wind. The lower part of the higher wind running againt the upper part of the clouds, carried of fome part of them, which being exceeding rare, and agitated by an inteftine motion, began to thine: From thefe parts fwept off, were fometimes emitted rods; yet from the other clouds there Shot at times a column, which fhone a little. The other aurore exhibited nothing particular.

The air was very healthful all this month: Hence, very few diforders, except towards the clofe of it, fimple, and double tertians, and intermitting quartans in the country; but not fo rife in the city: And becaufe apples and pears were in fuch great plenty this autumn, and very cheap, the common people eat too many of them: Hence arofe dyfentefies, efpecially in the country, but not fo common in the gity; yet they did not fpread, nor were they catching.

The greateft declination was $14^{\circ} 30^{\prime}$; the leaft 14°.
The weather was moderate and mild till Noverzber; fo that it feemed the approach of a temperate fummer, and not the autumn. On the roth M. Mufcbenbroek obferv'd the trees ftill green, and very few yellow leaves fallen from the limes. the wheat fown this autumn grew too faft; fo that the oxen were put to feed on it, and keep it under, that it might be the better able to bear the cold of the following winter. All forts of pot-herbs were as frelh in the gardens as if it were in Auguft: So that tho' the fummer came late, yet it refrelh'd the earth for a long time with its cheri/hing heat : The 26 th was exceeding hot, tho' the air was moift, and the wind at north.

On the 6th day he obferv'd an aurora borealis, different from any he had hitherto feen: For, the fky was adorned with feveral interrupted clouds from the fouth along the weft to the north, which all ftood ftill in their places, tho ${ }^{\circ}$ there was a little wind firring; and they fhone with a white light, that illuminated the whole heavens: The aurora the 30 th exhibited nothing uncommon: Tertians were very rife; efpecially double tertians and intermitting quartan:; they were not obftinate, but happily removed by the abovementioned method. The fmall pox likewife prevailed, not very numerous, but of the confluent and diftinct fort, of a kindly nature, and carrying off but few; tho' there were a great many puftules on the face.

The greatef declination was 14° ' 5^{\prime}; the leaft 14°.
In December, when M. NuSchenbroek found that the inclinatory needle had loft a great deal of its virtue, he drew it again along the magnet, and impregnated it with as much virtue, as it could well take; and it immediately pointed to the true inclination, namely $69^{\circ} 15^{\circ}$. Being feveral times moved out of its fituation, after forne number of of illlations; it return'd to the fame degree of inclination. The greats ft declination was $14^{\circ} 21^{\prime}$; the leaft $13^{\circ} 23^{\prime \prime}$.

The fmall pox this month were of the fame kind as thofe in November: And befides, there were intermitting tertians and quartans, that exhibited nothing uncommon, nor different from thofe in the foregoing months of autumn.

The whole quantity of rain that foll this year was only ${ }_{17}$ Rbinland inches and $\frac{x}{3}$ perpendicular height, fo that it is to be reckoned among the drier years. There evaporated

17 inches 10 lines and $\frac{\pi}{2}$, which is nearly the quantity he obferv'd the preceeding year.
An extraordinary foffile Scull of an Ox, with the Cores of the Horns; by M. Klein. Phil. Tranf. $N^{\circ} 420$. p. 42%

NEAR the city of Dicfchaw was dug up part of the fcull of an ox, with the cores of the horns, which in all probability muft have been prodigious.
Fig. 8. Plate X. reprefents the outfide of the full to the orbits of the eyes; ab three foot two inches and a half $; c d$ 1 foot I inch and $\frac{\pi}{3}$; ef \mathbf{x} foot 4 inches; g b foot I inch and $\frac{3}{4} ; i K$ the root of the horns I foot 6 inches in circumference; $l m$ the cores $I r$ inches in a ftreight line, thefe cores have deep longitudinal furrows; they are not entite at the exrremities, and yet are diftant from each other.

Fig. 9. reprefents the bafis of the fcull.
Fig. 10 the occiput.
M. Klein does not take upon him to determine to what kind of bulls this foffil belonged: He only conjectures it may belong to the taurelephants mentioned by Sir Hans Sloane Pbil Tranf. N ${ }^{\circ}$ 397. p. 222. And as to the Zubrones, which Gefner on the urius p. 144. mentions from Munfer, there is no fufficient proof that the animal in queition was of that kind.
A fartber Account of a remarkable Plica Polonica; together with a prodigious Swelling of the Eye; by M. Klein. Phil. Tranf. ${ }^{\circ}{ }^{5} 426$. p. 428.
HIS furprifing plica polonica (vide Pbil. Tranf. $\mathrm{N}^{\mathrm{o}} 417$ p. 50.) was fent to Dre/den, where M. Klein faw it. It is remarkable, that the woman (Fig. II. Plate X.) affected with it, who liv'd in the diftrift of Novogrod, during 52 years that the laboured under it, never changed her refting place, but twice a year, vizo in fpring and winter. Upon the approach of winter the could endure cold fo very well, that the Shunn'd all fort of heat, even that of a lighted candle. She never us'd any ftrong liquor, but liv'd on very bad bread, raw herbs, and water, to 70 years of age; the died in 1728. In the fpring the was wont to be carried to fome place where the heatcould not eafily penetrate.

Fig。

Fig. 12. reprefents a prodigious fwelling in the eye of a fuoject of the Princefs of Radzivil; it was occafioned by hail, and it daily encreafed and grew hard, except at the place marked a. This circumftance is very fingular, that the optic nerve and the tunicles had ftretch'd fo much, that the eyequitted its focket, and fell down to the beard at b : He could move this eye which wept; but could not fee with it. The tumour was not painful, but very troublefome about the nofe.
Of the USe of the Bark in Mortifications; by Mr. Shipton, Phil. Tranf. No 42G. p, 434. Tranfated from the Latin.

MR. Rufbworth, a furgeon of Nortbampton in a letter to the company of furgeons at London, dated OCtober 18. 173I, informs them, that he was call'd to vifit a parient, whos from an internal caufe, had a mortification in his foot, reaching to the bones, with a violent fever upon him, and a quick pulfe; and that at firt he checked the mortification by deep fcarifications and the ufual remedies, the fever abating, the pulfe becoming more regular, and pus appearing on the edges of the ulcer; and that afterwards upon the mortification recurring a fecond and a third time, and fpreading farther, be had check'd it by the fame method: In fine, that having had recourfe to the bark, while the fever remitted, both the fever and mortification were entirely remov'd; and that the patient after amputation had liv'd for feveral years in perfees health; and he affirms that he had feveral times after this experienced the fame thing, To this Mr. Amyand anfwer'd in a letter dated fuly 29, 1732; that he himfele had, afrer the example of Mr. Rufbreorth, us'd the bark feven times with fuccefs in a mortification, and particularly in a patient of 98 years of age, who had a mortification in his foor from an inflammation; and as it fpread farther every day, in 24 hours after giving the bark, the mortified parts began to feparate, and a laudable pus to appear; as allo in another morrification, which had for three weeks together baffled the ufual remedies; and in like manner in a third, which proceeded from the punctures made in the legs in a dropfy, the good effects of the bark appeared, the mortification being check'd in one days time; tho' this patient happened to die, as he alfo laboured under an incurable jaundice, and was exhaufted both by the diftemper, evacuating

MEMOIRS of the

medicines, and a gangrene in one of his legs: And from shefe inftances he thinks it pretty evident, that the bark is no lefs infallible in curing mortifications, from what internal caufe foever they are, or at leaft in checking them, than in removing intermitting fevers.

Befides, it is worth oblerving, that Mr. Fobn Douglas in a letter to Mr. Rußproorth dated 7 fuly 5, 1732, tells him, that he was call'd to a patient of 50 years of age, who had a morrification in his foot from an internal caufe; and after fcarifications, and alexipharmics, both internal and external, and the other ufual remedies, had prov'd unfucceffful fot fome time, the mortification lpreading daily, that at length by adminiftering the bark, which Serjeant'Dickens and Mr. Chefelden had both advis'd him to try, the mortification was immediately checked, the fever abated, and in a little time all the mortified parts, as the tendons, ligaments, and all the bones of the foot, metatarrus and tarfus, fuppurated fpontaneoully, and the patient recovered: All this Mr. Rufszeorth publifhed in a fmall treatife in Eniglifh; of which Mr. Sbipton has here given an abftract, with an account of what he himfelf obferv'd in the ufe of the fame remedy.

Mr. Sbipton was call'd to vifit a gentleman of 50 years of age, who, from a too liberal ufe of wine, and a cachexia arifing from thence, had an inflammation in his foot, that turned into a mortification of the toes and metatarfus: Tho alexipharmics, and other proper remedies, both internal and external, had for feveral days been us'd, yet the mortification furead every day deeper and wider with a fever, rather flow than anyways violent, and a fpurious dicbetes, or a plentiful difcharge of a more limpid urine. For removing all which, efpecially fince the increafed quantify of urine feem'd to require the aftringent qualities of the bark, and fince both Mr. Ruflezorth's and Mr. Ansyand's trials'promis'd fuccefs, Mr. Shipton propos'd it to the phyficians and furgeons; to which they eafily agreed, fince they were fatisfied from feveral fruitlefs trials, that ampatation would be of no fervice : But tho two fcruples of the bark were, given every four hours for fome days together, yet it feem'd ineffectual in removing either the diabetes or mortification; the former exhaufting the vital moifture, and the latter by its fpreading ftill farther, confuming the fleth, the patient died in abour two weeks time.

The bark prow'd more fuccefsful in a patient of about 35 years of age, of a melancholic fcorbutic habit; for, drawing a charge of powder out of a fowling piece, and unwarily clapping the palm of his right hand on the muzzle, the piece happen'd to go off; he receiv'd a wound thro' the middile of his palm, extending wide and deep between the thumb and fore finger, whereby the veffels and tendons were lacerated; the hemorrhage being immediately ftopped, his hand was dreffed; fur fome days the patient had a grievous pain, with a large fwelling and inflammation in all his fingers except the thumb, and all over his hand and arm; and nothing came out of the wound but a large quantity of ichor, at firft of a bloody, and afterwards of a dufkifh colour, and fomewhat fetid; and the wound itfelf of a blackifh colour fpread farther every day, and the fwelling, inflammation, and pain, were fearce diminifh'd, tho' recourfe was had to the ufual remedies in fuch cafes. But on the eleventh day there flow'd fpontaneous at four feveral times in the fpace of 24 hours fome ounces of blood, which likewife twice fropp'd fpontaneoully, and was twice ftenched by applying \int p. terebinth. and comprefling the hand; and now the lips of the wound plainly appear'd mortified, and the actual cautery feem'd to be the laft refort, both for flopping the homorrbage, and the progrefs of the mortification, fince the one baffled fonentations and cataplafms, and the other, bandages; but if the cautery Should not fucceed, recourfe muft be had to amputation, which, how doubfful a remedy in bodies of fuch a habit is fufficiently evident from experience: And in order to put a ftop to both, he likewife thought proper to try the bark, of whofe efficacy he had then heard a great deal: On the I_{2} th day, therefore, two fcruples of the bark were given in the morning, and repeated every four hours: Next morning afier the patient had taken half an ounce of it, Mr. Shipton found the pain very much abated, the fwelling of the hand fallen, and a little pus obferv'd about the lips of the wound within the bandage; and the edges which the day before were black with the mortification, now feemed to begin to feparate. The fever, likewife, which at firt was noways violent, yet pretty fenfible, when the hemorrhage encreafed, now entircly ceas'd, the urine depofiting a little fedimens of a dirty or whitilh yellow, rather than of a lateritious or rofe colour. The ufe of the bark was continued in the fame manner for two days, and afterwards for two days more it VoL.IX. $\mathrm{N}^{\circ} 10$
was taken thrice a day, and for 3 days more only twice a day fo that there were 2 ounces of it given in one week. In the meam time the fwelling and inflammation vanifh'd, a pure pus flow'd! from the wound, the flefh grew underneath, and the pain, which yet ftill continued pretty fharp in the carpus, when the patient mov'd it, was much abated. For 3 weeks after he was very, well, only that he had rheumatic pains (with which he was ufually troubled in winter) fometimes in his foot, and fometimes in the acromion, and one or both /capula's, accompanied with a fwelling; he was free of a fever, and had an appetite for proper food. But afterwards on the 19 . of December, his appetite: became weaker, the pain in the metacarpus together with the fivelling increafed; which feeming to heigbten the day following, the pulie became fomewhat quicker on the 3 . day, and the fwelling of the metacarpus together with an inflammation threaten'd an $a b f c e f s$, while there flow'd a white pus from the wound, and in the fame quantity, as before. But on the 4 . day the lips of the wound, fwell'd with veficles, tended to a gangrene, with a plentiful difcharge of fanies without any pus, and the hand and carpus were inflamed, and pained much: Upon giving, therefore, the bark in the fame manner, as before, within the fpace of 8 hours, the patient having fcarce taken 3 dofes, the pain, which before was very fharp, was laid as by a charm, and the next dreffing the fwelling of the hand feem'd to abate by one half, and a laudable puis to run from it. At firft the urine was of a pretty intenfe colour, and then it gradually became more dilute, with little or no fediment. After this to prevent a relapfe he gave $\frac{x}{3}$ an ounce of the bark every week for 6 weeks, having given 2 fcruples twice every day for 3 days; and at length after 4 months he compleated this laborious cure, in which, all the tendons of the mufculi perforati and perforantes, excepting thofe of the little finger, were impofthumated; and a bone of the metacorpus, and another of the carpus, was laid bare; and he cur'd one or two ablcefjes on the back of the hand.

From thefe hifories, and efpecially from the laft, Mr. Shipton thinks it pretty evident, that here nothing is to be afcribrd either to the joint virtues of other medicines, to the peculiar difpoffion of the humours, to fome unknown idiofyncrafia, to the ipmotaneous remitting of the fymptoms, to a fortuitous crifis and falutary evacuation by other fecretiuns, or in fine to chance, but that the whole fuccefs is folely to be afcribed to the vittues of the bork. But tho' in the abovemention'd hiffories the pow-
der of the bark is only faid to be ufed; yet fhould any one on account of a weak ftomach, or for any other reafon decline it in that form, Mr. Sbipton thinks that half that quantity of he refin or extract of it would have the fame effect, fince we daily fee that preparations of the bark have the fame efficacy in inermitting fevers, where its chief virtue appears, as the bark itfelf. But thould any one from the firft hiftory, related by Mr. Ruploworth (where he was afraid of adminittering the park, while the fever was continual, and deferred the ufe of it, ill it reminted) contend that there was a latent iniermitting fever in all the cafes mentioned; and confequently, that it was not furprifing, if the bark fhould get the better of it: To this it may be anfwered, that nothing of this kind was obferved in moft, nay quite the contrary in lome of the patients, as pretty good judges of fuch fymptoms do teftify: Rut in the laft hiftory, where Mr. Sbipton himlelf was as attentive as poffible to every ircumfance, he cannot fay that he obferved any thing of a larent or unufial fever, of the continent kind, much lefs of the intermitting, nor any febrile fediment in the urine, nor unufual heat, thifft or rigor at a particular time of the day, nor any drinefs or blacknefs of the tongue; and if we impartially confider the matter, we fhall find that the fever, whatever it was, as only fymptomatical, which according to the opinion of the ancients (nor even do the moderns deny ir, and the thing is evident of iffif) could by no means be an intermitting fever: And what principally regards this argument, namely, that the virtue of the bark in checking a mortification, is not from its retreang any intermitting or latent fever, Mr. Shipton mentions a
Bradley's, a furgeon in London, in which Lays, that the ufe of the bark had the fame happy effer he cachectic and leuco-phlegmatic woman, who, by accident ing a large and traniverfe wound on the upper part of the leg, had on the third day a violent fever with a quick and intermitting pulfe, a drinefs and blacknefs of the tongue, a ftern countenance, and fome degree of a dolirium, and a gangrene, poffeffing almoft all the leg; by adminiftering the bark every 4 hours the gangrene was checked in 24 hours time, and the other fympthe vanifh'd: But on the $5^{\text {th }}$ day intermitting the ufe of fymptoms abated, and the patient recover'd.
From this hiflory as alio from fome of thofe mentioned above, it appears that no: only the bark may be adminifterd with

$$
\text { Z z. } 2
$$

364 MEMOIRS of the

afety, and fometimes with fuccefs, while the fever continues; but likewife that this kind of fymptomatical fever is not of the genus of the common putrid fevers, which is, therefore, by fome medical writers referr'd to its own peculiar genus; nor oi thofe that are clafs'd a mongft intermitting fevers; fince in all thele phyficians obferve that the ufe of the bark is generally noxiou and fometimes fatal; but feveral trials evince that it was falu tary in this: But thefe things want to be fill farther confider', by phyficians. Befides, from the abovemention'd hiftories it i worth obferving, that tho' in fome of them the wounds were th immediate caufe of a gangrene, yet that in all of them, th chief and principal caule feems to be taken from the ftate anc condition of the humours; and confequently, that internal re medies rather than the ufial external ones, aniwer'd the purpot with greater difpatch and fafety.

The efficacy of the bark in ftopping hemorrhages of th nofe, lungs, and other parts of the body is fufficiently known and Mr. Sbipton thinks he may recommend it to furgeons fro his own experience for ftopping a flux of blood in externa wounds, when the veffels will not unite by reaion of the to great tenuity or acrimony of the blood; and he likewife four it feveral times very ferviceable in exceffive evacuations of e: crementitions, or even orher ufeful juices befides the bloo What effect this wonderful bark may have in fome ulcers of th worf kind, called Nome and Pbagedene, and probably, malignant Herpes, Mr. Shipton will not take upon him to d termine for want of experience ; he contents himfelf with gi ing this hint, reafoning from analogy; that fince a gangre and mortification are putrid and corroding ulcers, it may tom times, probably, have no lefs efficacy in others of that kin which yet he thinks thould not be attempted, without a pr vious preparation of the whole body (which may be eafily do in thofe, tho not fo in mortifications, in which no time muft loft) and having a regard to the whole habit of the body, at not withont the advice of a learned and prudent phyfician.
Corrections and Amendments to the Natural Hittory of t Coccus radicum tinclorius; by Dr. Breynius. Phil. Tra Nio 426. p. 444.

IN Dr. Breynius's Natural Hiffory of the Coccus radicu when after feveral repeated obfervations and experime (efpecially thofe in p. 16, 17.) he had given an account the generation and metamorphofis of that integ, which ufes

Royal Society.

ftick to the extremities of the ruots like a fpherical grain, and is commonly call'd coccus Polonicus, he conjectur'd that thefe fmall flies, which are often found among the coccus, did not belong thereto, but ow'd. their rife to fmall worms of their own kind, and were accidentally found among the coccus; and as the Dr. could not find any difference of fex among the worms of the coccus, and following chiefly the opinion of S. Ceftoni concerning the coccus of the ilex, he ventur'd to aflert that the coccus radicum is likewife an infect of the hermaphrodite kind, which brings forth eggs of, and from itfelf, and propagates its ipecies without being impregnated by the male. But the fummer following he was made fenfible of his error, and about the end of it he was entirely convinced of his being in the wrong.

Having repeated his obfervations with the greateft exactnefs, and examin'd them in the ftricteft manner, he at laft found that the metamorphofis, or evolution thro' which the coccus radicum paffes is as follows.
A. Of the male 1. The egg
B. Of the female
I. The egg

The eggs are laid about the end of 'fuly, or beginning of Auguft.
A. Of the male
B. Of the female
II. A worm with fix feet and II. A worm with fix feet and no wings. no wings.

The worms come out of the eggs about the middle of All guft, till the beginning of September.
III. The lefs fpherical grain, that is the coccus ftricily for call'd, of the bignefs of a grain of poppy feed or millet at fartheft, gather'd from the 9 . of \mathcal{F} une till the fummer folltice, with other big-

rer cocer.

IV. The leffer worm with 6 feet, no wings: It cornes out of the abrivementioned coccui, from the fummer fol.
III. The larger fpherical grain, the coccus of the bignefs of a vetch, or as big as that of white pepper, which is gathered from the middle of Fune till about the middle of fuly.
IV. The larger worm with 6 feet and no wings ; that is, the female coming out in the beginning of fuly; but
ftice till the middle of Fuly.
V. The nympina which appears about the beginning of July and the following days. VI. The fly, the male, coming out from the middle of Fuly till the 24. of the fame month, which impregnates the female worm marked N° IV.
chiefly about the middle of the faid month; which being impregnated by the male N° VI. brings forth the egg \mathbb{N}° I.

This infeet under what fhape foever it appears, whether of a grain, a male worm, a nympba, a fly, a female worm, or a worm coming out of an egg; when prefs'd and crufh'd does always afford a matter of a purple colour, which however is obferved to run moft copiounly in the cocci and the worms, efpecially the female ones,

- 4 farther Explanation of the UJe of the Bile in the Animal Oeconomy; by Dr. Alexander Stuart. Phil. Trant. $\mathrm{N}^{\circ} 42 \%$ p. 5 .

1N the fhort effay on the ufe of the bile in the animal ceconomy in Pbil. Tranf. $N^{\circ} 414$. fome points having been there only hinted at ; Dr: Stuart thought it neceffary to fet thefe in a clearer light, by folving fuch difficulties, and anfwering fuch remarks, as have occurr'd either in converfation or correlpondence on that fubject.
The firlt remark which deferves regard is, that no notice is taken of the effect of the gall fpilt upon the external coat of the inteftines from the wound in the gall-bladder, whofe fimulus on the outfide is fuppos'd fufficient to bave produced, and to have folv'd all the phenomena; 'or fymptoms ubferv'd and related in the cafe: So that all the fymptoms, attributed to a want of the ftimulus of the gall on the infide of the inteftines, might have been more properly afcribed to the fame finmulus, acting upon the outfide of the uppermoft guts, fruated next the gall-bladder, whofe compleat contraction by the force of that fitmulus expelling the air out of their caviry, and forcing, it into the lower guts (as in windy culics) would have diftended them
to the pitch, mention'd in that effay. At the fame time it is acknowledged, that had the gall been carried clean out of the body by any vent; fo as that no ficmulus had remain'd to act either upon the infide or outfide of the inteftines, then the Dr's way of accounting for the fymptoms had been good, and the conclufions juft.
The Dr. acknowledges, that there is fome appearance of reafon for this remark, and the objection it implies: But the whole ftrength of the argument according to the Dr. lies in a fuppofition that a fimmulus on the outfide of the inteftines is capable of exciting a contraction, fupplying the want of that fitimulus on the infide, and likewife of caufing a preternatural diftenfion of the whole inteftinal canal: The contrary of all which the Dr. endeavours to prove.
And in order to this he thinks it neceffiry to premife what, perhaps, may not have been univerfally adverted to, yet can be no fooner propos'd than acknowledged I . That the whole action of the nerves, whether in fenfation, or mufcular motion, is exerted at their extremities only. 2. That the fides of the nerves every where along their whole tracts are entirely infenfible, and ferve neither for fenfation nor motion.
The apparatus of nature towards both thefe actions makea, this plain. Towards fenfation we fee, that the medullary fubftance of the nerves at their extremities is divefted of its coverings, which are proceffes of the dura and pia mater, and ends bare in the form of fmall fofs papilloe, which from their figure anatomifts call pyramidales, on the furface of the cutis, covered over with the cuticula, where they act their part in fenfation, or in feeling, tafting and fmelling. The foft denudated branches of the optic nerve which compofe the retina, and what for the fame reafon is call'd the portio mollis of the auditory berve, the immediate inftruments of feeing and hearing, prove the fame. Again, it is the extremities of the nerves that enter with their coverings into the mufcle, and into each fibre of the mufcle to which they belong; where they depofit their contents, or act their part in mufcular motion. But the fides of the nerves alont their whole tracts are infenfible or void of feeling; becaufe their medullary fubftance, and its contents, which are the only immediate inftruments of fenfation in them, are here cover'd with the pia and dura mater; the laft of which is the ftrongeft, denteft, and moft unpenetrable membrane of the whole body, capable of defending and conveying the tender medullary fubftance of the nerves and its contents,
fafe, unhurt and undiflipated to the feveral organs of fenfation and motion, at their extremities, the feats of their action.

A farther confirmation of this from experience is the infenfio bility of the fide of a large vifible branch of a nerve, which fometimes happens to lie bare and expos'd in a wound or ulcer, where it will bear the touch of the probe without feeling, and occafion no more pain than in wounds and ulcers of the fame kind, where the nerves are not expos'd, unlefs the invefting membranes, viz, the dura and pia mater be by any accident wounded, lacerated or corroded: In which cale, the medullary fubitance being laid bare, exquifite pain is felt, and very fevere fymptoms eniue, which are hardly to be conquered, or never fo eafily as by cutting the nerve quite thro; fo as that the extremity may retire within the fleth, and the medullary fubftance be defended by it. By wich it appears, that the fides of the nerves are infenfible; and that the extremity of the medullary fubtance laid bare, either by nature; or by fome accident, is the only immediate inftrument of fenfation. This being premis'd, the ftructure of the intertines, the parts in queftion in the cafe before us, comes to be confider'd.

The inteftines are made up of 4 tunics or coats; the firft or external coat is a common membranous cnvering from the periton cum. The 2 d. is compos'd of annular, contracile, muicula frores, the tmmediate inttruments of their periftalic motion. The ad. is the nervous coat, a reticular plexus of nerves, intermix'd with blond veffels and glands, placed immediately under the mufcular; and over the villous coat. The 4th. is the villous or innermoft coat on the concave fide; rightly call'd villouis, as it appears thro' a microfcope: Tho' from its appearance to the maked eye, it be erroneoufly called the mucous coat. This is generally allowed to confift of the capillary extremities, or rather roots of the ladteals, and the excretory ducts of the glands, which together form thefe willi obferved in it. A mong theie, in analogy to all other parts of the body, the papille pyramidales, or extremities of the nerves, are lodged under the cuticula of the nervous crat, for the ufes of fenfation, fo neceffary for the purpufes of nature, in this very fenfible part the infide of the gurs, which is known to be to quickly and neceffarily affected by the qualities of their contents.
The proper nerves of the firft or outer coar are thofe of the peritoncum, of which it is a part, arifing from the medulla $\int p i-$ nalis of the loins and os facrum: Whereas the nerves proper to the guts are from the par vagum and mefenteric plexus: As,
therefore, there is no communication of nerves between this external coat or covering, and the proper fubftance of the inteftines themfelves; a fimulus, asting upon this external coat only, would not affect the guts, fo as to excite any confiderable degree, either of fenfation or motion in them.

Again the proper nerves of the inteftines, whofe origin, difpofition, and fituation, have been already defcrib'd, terminate either in the mufcular contractile fibres of the coat immediately above them, or carry their extremities to the infide, where they terminate under the cuticula for the ufe of fenfation: So that a ftimulus on the outfide of the inteftines, befides the difficulty of pafing thro' the external coats, before it could reach the proper nerves of the guts, would at laft only irritate their fides, where they are infenlible, becaufe cover'd with the dura mater: And if it might be fuppos'd that fuch a fimulus as is in queftion, to wit, the gall, could have penetrated thro' thefe coats into the cavity, where the fenfible extremities of the proper nerves of the guts lie expos'd to it; yer fuch a filtration thro' all thefe coats, as it could not be performed foon, nor in great quantity; fo it would enter at laft, divefted in a great meafure of its grof fer, faline, oleaginous and pungent parts, by the filtration, and thereby lofe the power of a fimulus on the infide; as the fituad tion of the parts, and difpofition of the nerves above defcrib'd, made it an ineffectual one on the outfide, as much as if it had been carried quite out of the body. To conclude, if the gall, fpilt on the ourfide of the guts, had been capable of exciting a contraction in any part of them; fo foon as it came to cover the whole furface, it mult have had the fame effect equally every where, and the whole canal fhould have been found contracted to its fmalleft diameter: Whereas it was found every where diftended to a great pitch. It is, therefore, plain that a fimulus on the outfide of the inteftines has not the effet of fuch a fi i mulus on the inlide : It can neither excite them to a contraction, promote their periftaltic motion, nor fupply the defeet or want of fuch a fimulus on the infide, much lefs occafion fuch an unio verfal diftenfion, or account for the fymptoms arifing from it, which is what the Dr. underiook to prove. It was for thefe reafons, and to avoid piolixity, that the gall fpilt on the outfide of the inteftines was not taken notice of in Phil. Tranf. $\mathbb{N}^{0} 45$.

The fecond difficulty is how a freh recruit of chyle fhould be a caufe of neep.

Vol. IX. 10
A. 3

MEMOIRS of the

The experiments made in Phil. Tranf. No 424, he hopes may ferve to juftify what be here affumes, concerning the nature and exiftence of the nervous fluid, or animal fipiris, in the folution of thisfecond difficulty.

The argument runs thus: It is well known that people after a plentifui meal are often inclin'd to fleep, long before the chyle can be fuppofed to be got into the blood: Therefore, a frefh recruit of chyle cannot be the caufe of fleep; but there muft be fome other caute, at leaft at that time: Which caufe is affigned by fuppofing, that after a plentiful meal the diftended ftomach will load and opprefs the defcending aorta; fo as to hinder the blood in its defcent; and thereby force a greater quantity than ufual into the afcending aorta, which by its diftended branches in the brain, will obftruct the fecretion of the animal fpirits thro the glands of the cortical fubitance into the origin of the nerves, and thereby produce fleep. This being generally efteemed a mechanical account of the caufe of fleep after meals, de. ferves the greater attention.

In anlwer to which; if fuch were the true caule of fleep after meals, it ought to have the fame effect upon the cere bellum; from whence moft of the nerves, that ferve in the natural and vital functions, arife; and to it would hinder thefe functions, to wit, digeftion, the periftaltic motion refpiration, and the circulation of the blood; all which, ot the contrary, are obferv'd to be ftronger and more regula in fleep than when we are awake, at leaft in a healthy anc temperate perfon, who has us'd moderate exercife. Again gluttony, drunkennefs and flatus's, which overload the fo: mach; and therefore, according to this hypothefis, ought tit produce the quieteft and moft, ferene repofe in fleep, do, on the contrary, bring inquietude, or broken and inrerrupter reft; and when, to the greateft excefs, a lethargic fleep which is a difeafe for the time, and fometimes terminate in death. In like manner the incubus, which is juttly fup pos'd to arife from an infation or diftention of the ftomact in a fupine pofture in bed, oppreffing the detcending aorta ought to produce quier reft: Whereas nothing difturbs mors as it firft brings. the perfon out of quiet neep into a fort waking dream, with a fenfe of oppreflion, and at laft wake him yuite in a kind of terror, with a palpitation of the hear And indeed as nothing contributes more to found and quio feft than an eafy digeftion and refpiration, a fedate, equa

Royal Society.

nd regular circulation of the blood; that is, an uninterupted exercife of all the natural and vital parts; the reverle of thefe, and particularly an interrupted or difficult circulation, if to any confiderable pitch, muft produce the contrary effects, to wit, tome degree of reftleffers or inquietude; as in fevers and other diffempers attended with fuch irregularitics of the animal oeconomy.
The difficulty fuggefted about the chyle's not getting foon enough into the blood, by the way of the lacteals, to produce this effere in fuch as fleep immediately after a pleniful meal, vanitherh when we confider, that this very rarely happens, at leaft never attends temperate people, in perfect bealth, and in a temperate climate; but fuch as are grofs feeders, drunkards, corpulent, fhort-neck'd, by conifitution, or make, hable to apoplexy or palfy, or have formerly iuffer'd by luch diftempers, or live in a hot country.

In grois feeders, drunkards, and fuch as are corpulent, from thefe caufes the lacteals are never quite empty : in fuch the food of the prefent meal, by exciting the periftaltic motion, will, in a few minutes, prefs forward the chyle of the preceeding meal into the blood. In full veffels or tubes the reception and difcharge will be inftantaneous, or nearly fuch; becaufe, fuppofing the apertures to be free, or unobftructed, as much precifely will iffue at one extremity of a full veffel or tube, as is forced into it at the oppofite extre.mity, and that inftantaneoufly; becaufe of the contiguity of the globules, or particles of the fluid it contains. In fhortneck'd people the paffage between the heart and the brain being proportionably thort, the force or momentum of the circulation in the brain is by fo much the greater; but a ftrong and fwife circulation is an enemy to all fecrerions, as is evident in fevers, and mechanically demorftrable: For, all the fecretions being by lateral branches going off at or near to right angles (which is very remarkable in the brain) a fwift circulation or motion along or parallel to the axis carries along with it what hould be laterally fecerned: Hence a paucity of animal fpirits in thort-necked people, who by
ihat gies, a liake are liable to apoplexies, palfies, coma's, letharmeals, when the frefh chyle has got admifion, to abforb part of the already few remaining fpirits, which muft be recruited in fleep. Again in hot climatés; a continual wafte or dufipation of the firits by beat, makes the inhabitants
generally lazy and unactive: In fuch the recent chyle, the groffeft circulating fluid of the whole body, will quickly abforb the few remaining ipirits, and difpofe them to fleep after every meal; except when the cool of the evening checks perfpiration, and the evaporation of thefe fpirits, which were recruited by fleep in the day time; and therefore remain plentiful enough to fupport their activity after fupper, when the bufinefs of the meaner, and diverfions of the richer fort begin; which, in colder climates, is the cafe after breakfatt and dinner. For a farther confirmation of this, brandy and the fipiris of fermented liquiors, are known to produce a drowfy fupidity in fuch as drink them to any pirch, and an habitual dullnefs in habitual drinkers of them; and when drank to excefs, they throw into a kind of lethargic fleep for fome time: Yet the quantity taken down, fufficient to produce thefe effects, is never fo much as to load or diftend the flomach in fuch a manner as to opprefs the defcending aorta, or hinder the circulation downwards; and therefore, cannot be fuppos'd to produce fleep or fleepinefs in that manner, but in a different way, as thall be defcrib'd in the feguel of this difcourfe.

Thus, what has been generally effeemed a mechanical caufe of fleep after meals, being, the Dr. thinks, fufficiently refuted, it remains to eftablifh fuch a general caufe of fleep, as may be conformable to what is advanc'd in the effay under confideration.

He believes it will hardly be denied, that the caufe of fleep in general is a want of a fofficient quantity of animal fpirits, for the ufe andexercife of the animal functions: Whatever, therefore, prevents their recruit, hinders or impedes their fecretion, abforbs or fetters them when produced; and whatever exhauts or evaporates them, by occafioning a paucity of firits, will, in a bealthy perfon, produce a liftlefinel's, lazinefs, a tendency to fleep, or fleep itfelf, in proportion to that paucity of the remaining fpirits. If we cnumerate all the known remote caufes of fleep or fleepinefs, we fhall find that in fume one or orher of the ways above fet down, they do all of them tend to produce this immediate or proximate caufe, to wit, an impairing of the nervous fluid, or animal fpirits, and thereby bring on thefe feveral difpofitions to fleep, or fleep itfelf.

All the remote caufes of fleep or neepinefs may, the Dr. thinks, be fully comprehended in the four following parti-
alars, and confidered in the following order. I. Exercife. 2. A too plentiful meal. 3. Drunkennefs, or a too great quantity of fermented liquors, or of their diftill'd firits. 4. The whole tribe of narcotics, foporifics; of which opium, and its feveral preparations, are the chief.

1. Exercife appears to wafte all the fluids, and particularly the animal fpirits, the active inftruments of all motion: So that the remains are not fufficient for the exigencies of the natural and vital functions, nor to fupply the demands of voluntary motion, nor affirt in fenfation, and the operations, of the mind. And here it is proper to hew how this wafte neceffarily brings on fleep in a healthy perfon; and how the natural and vital motions and functions of digeftion, circulation and refpiration, notwithftanding this wafte, do neceffarily go on in fleep, leading the remains of the firits to their affiftance, and making the deficiency fall to the hare of the animal or voluntary motions and organs of fenfation* In order to thew this, let us obferve what is very obvious ; namely that when any mufcle is brought into action againit our will by a fuperior force, as when a ftronger man bends or extend's one's arm contrary to his will or inclination; the benders or extenfores of the arm fwell and contraft in the fame manner, and the afflux of the blood and fpirits to the contrasting mufcles, is the famse, as when it is done voluntarily: Therefore, by any external or adveatitious force, the blood and fpirits will be derived upon the parg thus forced into action: But all the natural and vital parts have fuch an external or adventitious force continually acting upon them. In the prime vie, the weight and orher qualities of our food and driak, mix'd with air and bile, excite the periftaltic motion, as neceffarily as the weight of a clock, or fpring of a watch, wound up, keeps the wheels and pendulum, EC. in motion. The chyle forced from thence, and the blood returning into the hearr, neceffarily fet its elaftic fprings at work, and the fame blood and chyle forced into the arteries by it, make their diafole and following fyfole inavoidable. The air by its elafticity, and the whole weight of the armofphere, forceth iffelf into the claftic pipes and veficles of the lungs, and dilates them; which by their elafticity and mechanifm, affifted by various mufcles, and the ribs and cartilages of the thorax, as neceifarily repel it in expiration. It is, therefore, evident, that all thefe natural and viral parts are acted upon, and fot at work by an external adventitious and irrefintible force, con-

374

MEMOIRS of the

tinually exciting them, whether we will or not, whether awake or alleep; the blood, therefore, and remaining firits after labour, will be mechanically and neceffarily led to all thefe parts that are thus forced into action at all times; but efpecially, moft regularly and copiouily in aleep, when all external objects ceale to follicit our fenfes, and the will doess no longer determine the fipirits into the mufcles of voluntary, motion; which two kinds of action, as well as the operationss and paffions of our mind, do, in the day-time, make ftrong? derivations of the fpirits from the natural and vital functions; which, for that reaton, are never to perfect as in found and undifturbed fleep.

Thofe, who are acquainted with the doctrine of deritations and revulfions, founded upon innumerable obfervations in the animal oeconomy and practice of phyfick, dos know, that a flux of any of the animal fluids arifing from nature, or from a difeafe, or excited by art towards any one: or more parts of the body, or towards any organ of fecretion or excretion, will caufe a fenfible proportional diminution of the afflux to, and of the fecretion and excretion by the: orher parts and organs: So foon, therefore, as a deficiency of animal fpirits happens by labour, or from any other caule whatever, that defect will be firft felt in the organs of fenfation, the mufcles of volun: ary motion, and the operations; of the mind; becaufe thefe are not acted upon by fuch pow-erful and irrefiftible agents, as the organs of the natural and vital functions are in perfect health: For, the mind, being; fenfible of the defect of firits for its actions and operations, choofeth to forbear; we retire from external objects; and then the whole of the remaining firits are led to the naturall and vital organs, by the mechanifm above defribed; and the organs of fenfation and voluntary motion mult be entirely defierted by them for that time; which is the ftate of fleep, and which will continue, till a greater quantity of pirizs be: recruited than is confumed in the natural and vital functions; at which time the redundancy or overplus begins again to be? fecerned into the other deferted nerves, to wit, into thofe: of fenfation and voluntary motion; which fowing now copioufly into the relaxed mufcles, excites Itretching, yawning, Efc. and at laft rouzeth our of flecp.
2. A ton plentiful meal is known to caufe a heavinefs, inactivity, lifteffnefs, an averfion to motion or action, drowinefs, fleepinefs, and in fome fleep itfelf, foon after eating. It has been prov'd above thar this cannot proceed
from a diftenfion of the fomach; and that in fuch the lacteals are never empty; and that the chyle of the preceeding meal is forced thro' them into the blood by the fucceeding, almoft inftantaneounly, or fo foon as the periftalic motion is excited or increas'd by the food taken down, which mult be during the time of fuch a meal, or very foon after, according to the degree of fullnets of the lacteals before that meal. What change then can we imagine to have happen'd to the body in this time of a meal, fo remarkable, and fo likely to affect the oeconomy, as that of the admiffon of a fluid into the blood, much grofer and lefs fluid than itfalf? Such a mixture muft render the whole mafs grofer, or of a thicker confiftence than before, as it quickly mixeth with the finer, and abforbs its moft fluid paris; but it will hardly be denied, that if there be fucha fluid as animal fpirits, they muft be the fineft and moft depurated fuid of the blood: Thefe, therefore, will be abforbed and mix'd with this groffer crade fluid, the chyle; and therefore will be diminifh'd by it; and being thus entangled, will be more diff. culty fecreted, and in lefs quantity: Hence that paucity of firits, which will difoofe to fleep in the fame manner aw after labour on exercile.
3. How far ftrong fermented vegetable juices, or liquors, and their diftilld liquors, drank to any pitch of excefs, bring on fleep, or rome degrees of it, has already been faid. The diftill'd firits of fermented liquors are known to leffer all the fecretions and excretions; and therefore are of ufe in diarrbca's, in exceffive and colliquarive fweatings; and the Dr. has known French brandy, taken incautioully, to have pur a ftop to a fweat procur'd by fudorifics. In habitual drinkers of them, they gradually lefen the fecretion of the bile, and infenfible perfpiration; and thereby bring them at laft into the jaundice and droply. Spirituons liquors, and particularly French brandy in the moft remarkable manner. being mix'd with the blood, as it flows from a vein into a poringer, unites the ferous with the globular red patt of the blood, to fuch a degree, as that no ferum feparates from it in feveral hours, and in fome not at all: Whic!s thews in what manner it hinders the fecretions in the body; thefe being all of them of the ferous kind: Hence that great impurity of the blood ariing from a reftraint of the fecretions infuch people; and alfo that paucity of fpirits, the general caufe of fleep and dullnefs, very different from the alacrity and vivacity of the temperate, and eper of water-drinkers.

MEMOIRS of the

That, therefore, which fetters or binds up all the ferofities, or moft fluid parts of the blood, and proves a ftrong copula between them and the red globules thereof, may be reafo. nably fuppos'd to fetter or tie up the fineft fluid of all, to wit, the animal firits with the reft, and in the farme manner to hinder their fecretion, and thereby produce fleep, or fome fuch degree of it as is above-mentioned.
4. As to opium, and all the clafs of foporifics, if we com pare the vifible effects of them with what has been faid above of brandy, or firits of fermented liquors, we thall find them much the fame. Opium is known to leffen on fupprefs all the fecretions and excretions; and is, therefore; of luch remarkable ufe in fluxes, rheums, catarrhs, EJ C. It has indeed been taken for a fudorific, but that only ina compofition with aromatics, as in Venice or London treacle; or with faline bodies, as the fapo tartareus in the Pill Mattbrei or Starkii, and that two affifted by plentiful dila-. tion with warm fack-whey, or fuch like liquors, and the: addition of volatile fpirits of hartfhorn, Efc. which are known to thin the blood, as M. Leevenboeck's microfcopical obfervations, and the mixing of thefe volatile faline pirite with blood, as it runs out of the vein into a porringer, dm fufficiently evince: Which thews that thefe volatile falts are good correctors of opium, as they break down and colliquate the blood: and therefore tend to promore the ferous fecretions, which opium by iteelf, and all diftilld fpirits of fermented liquors do retain or reftra in for fome time, incor porating the ferofities with the red globules of the blood, ass has been obferv'd before. In hot countries, where large dofes of opium are taken, the effects are nearly the fame with what we obferve in drinkers of diftill'd spirits of fermented liquors; to wit, a fmall dofe exhilerates, a larger brings on fome degree of drunkennefs, or temporary madnefs; and this increas'd will lay to fleep, and a very large dofe will kill In this comparifon, therefore, may we not juftly conclude a parity in the cautes, from the fimilitude of the effects, that all the fceundary qualities of fuch caufes which offer themsclves externally to our fenfes, be apparently very different: Thas gun-powder is as much a latent fire as brandy, and will exert itfelf in that thape to a far greater degree than its an equal circumftances, that is, by the leaft conract of fire ; and therefore, tho brandy and opium fhew no outward res femblance to our fenfes in froell, tafte, colour, confiftence: and fuch like fecundary qualities, no more than brandy and gun-powder: yet if in proper and equal circumftances, that is, in contact and mixture with the blood, they produce the fame, or nearly the fame, effects, we may jufly conclude. that there is a latent fimilitude of primary qualities in their natures, which they manifeft in proper and equal circumftances, in producing the fame or parallel effects. But it has been above shewn how, and in what manner, brandy fetters and intangles the anmal fpirits, and other fluids of the blood; uniting them too intimately with the groffer parts, and thereby hindering their due fecretion for fome time: Whence a paucity of firrs, which diicovers itfelf by an inequality and irregularity of their diftriburion in drunkemefs, a ftill greater effeat in dullnefs and drowfinefs; till mote in fleep, and a total fupprefion of their fecretion, as well to the natural and vital, as to the animal organs, which is death, the effect of the greateft dofes either of fuch diftilld fpirits, or of opium.

From what has been faid on this fubjeet, it feems as plain as the nature of fuch a phyfical demonftration will admit of. 1. That the unverfal caufe of fleep is a paucity of animal ipirits. 2. That this defeet will arife from whatever exhaufts, waftes or evaporates them when produced, as labour and exercife; or from whatever abforbs them, as a great quantity of crude chyle, recently and fuddenly admitted into the blood, in the time of, or foon after, a plentiful meal; or whatever can fetter or re-unite them with the grofler parts of the blood, as much as brandy, or fpirituous fermented liquors, and opiates, All thefe, either by evaporating or wafting them; or by hindering their production or fecretion, do bring on that paucity of fipirits fpoken of, and fleep, or fome degree of nleepinefs, as a neceflary confequence. Yet it will be ftill true upon the fame foot of reafoning, that where the blood is exceedingly depurated, and the fecretions, and excretions from it already perfectly performed, as in long fafting, the whole mats of biood is become only fir for the fecretion of.fipirits; has no crudity or impurity in it to abforb or fetter the ipirits already produced; and no crude chyle admitted to anfwer that end. In fuch a cafe oplates can have no effect, the fipirits cannot be abforbed, fetter'd, or reftrain'd, where the qualities of the mafs of blood do nut concur to produce that effect. Another concurring caufe of the inefficacy of opiates in the cale of fafting is, that all the natural parts, thofe, to wit, of the primae

Vot. IX. 10
B b b
vias

37^{8}

 M EMOIRS of thevie, which ferve for digeftion, are at reft, for want of the weight and fimulus of food, and likewife of the gall in the cafe referr'd to, to keep up their periftaltic motiun: Therefore few or none of the fpirits being fpent on thofe parts, there is a greater fupply fent to the aninal organs of fenfation and voluntary motion; and indeed in fuch a cafe, even the vital parts for refpiration and circulation do act but very fluggifhly for want of a recruit of blood and fluids, proper to excite theiin functions: Hence alfo the fupply of firits to the organs on fenfation and voluntary motion, is by fo much the greater: and the poffibility of reftraining the fecretion, for the reatone above-affigned, impracticable by any power of opium, with-1 out the acceffion of a frefh recruit of chyle. Hence alfo thofe: who have any confiderable defeet in the natural and vital functions, or in either of them, by obftructions of the vi/ceras are generally bad fleepers, or watchful; and in fuch, opiates: have but little effect to procure reff, with this great difadvantage, that by impeding the fecretions, they increafe the obftruc. tions; tho' in many cafes, where the vifcera are found, they muft be acknowledged to be excellent medicines. What ha been faid will alfo fufficiently account for the anodyne powert of opium: For, if it impede the fecretion of the animal fpirits, the, immediate active inftruments of all fenfation, it muft certainly obtund or abolifh for that time the difagreeable fenfation of pain. 3. The third difficulty is, how pus fhould be the product of chyle, and not of the blood or Serum. Ass to which, it would not, the Dr. thinks, be difficult to prove, that all the grofs fecretions are from the chyle; thefe being only the depurations of it in fanguification, or in order to bring that crude and grofs fluid the chyle into pure and de-. fecated blood; from which no fecretion can afterwards be: made, but of that pureft fluid, which if fecretes into the nerves for the ufe of the whole oeconomy. If this be true, then pus; in a wound, ulcer, or impofthome, being a very grofs feculent humour, is likelier to iffue from the chyle, than from the purer or more defecated part of the mafs.

Of the flying Squirrel, or Mus Ponticus or Scythicus of Gefner, and of the Vefpertilio admirabilis Bontii: by M. Klein. Phil. Tranf. No 4^{27}. p. 32 . Trankated from the Latin.

IH A T a thoufand idle flories about winged and flying animals, as dragons, bafilifs, griffins, $\mathscr{C}_{6} \mathrm{C}$. have crept into natural hiftory, no one, who without prejudice and a vulgar credulity has thoroughly confidered the matter, can deny: The celebrated M. Scheucbzer in Jobi pbyjicâ facrâ p. 25.70 feq. as alfo Hyarintbus Gimma in his fecond Pbyjico biforico experiment. difert. de fabulofis animalivus have endeavour'd to confute theie fabulous relations. But as to flying quadrupeds in particular, experience fhews, that there are fome fuch; as common batts, which may be call'd creeping, if not walking quadrupeds, vide Gefner de avibus p. 695 . Befides thefe, there is a peculiar kind of flying lizzard, under the name of lacertus volans or dracunculus alatus, very common in Fava. Belonius, it is true, reprefeats it a Biped, but this is defervedly contradicted by ${ }^{G} P i j o$ and others: And indeed the dracunculi, preferv'd in feveral mufoum's, do abundantly confirm their being quadrupeds. Such quadrupeds are properly call'd fyying, as do really fly, that is, roam about freely in the air: But fuch are improperly faid to fly, as generally live in trees, as the sommon fquirrels, and other animals of this kind, martens, $E_{C} c$. nay, many otheys that by leaping from one tree to another feem to fly.
Amongit thefe the principal is the flying fquirrel, fo call'd, as it is provided with a kind of fail, or pecaliar flying inftrument. M. Klelin finds one of them in Levinus Vincentius's Catal. \&\% Defoript. Animal. 1726. p. 8. Centur. I. Na yz. under the name of Sciurus Virginien/is volans, without any farther defcription of it: And a certain friend toild M. Klein, that Mr. ———on London had a Sciurus Virginienfis, that flept all winter, and would nor wake unlefs fomething warm was applied to it, and then it would move one or both feet, till being quie awake, it would again feem to live. He finds another of them in Greiv's Mufcums of the Roya' Society, under the name of fying Squirrel, which Dr. Grezo takes to be the animal Scaliger in Exercit. 217. 6.9. defrribes under the name of felis volans. Larevon in his hiftory of Carolina exhibits a third. And in fine, Gefner de quadruped. p. 743. a foursh, which he calls Mus ponticus or fcytbicus, or fciurus

$$
\mathrm{Bbb}_{\mathrm{b}}^{2}
$$

volans

MEMOIRS of the

volans EG alatus: He himfelf had not feen the animal, but only its expanded 1 kin , which he likewife caus'd delineate; fome account of this laft M. Klein gives as follows: March ig. I Y27, two of thefe fiuri volantes were brought alive to Warfaw, and prefented to Auguftus II. King of Poland, both which Magnificus â Heucher, King's counfellor and phyfician obferv'd; and he examin'd one of them dead, and caus'd delineate its expanded body, as alfo its fkeleton, as reprefented Fig. 2. 3. Plate XI. In fummer 1728 the Princefs Radzivil fent M. Klein a live fquirrel, it was taken in the woods of Ericzovia, in the diftrict of Mobilovia, on the confines of Ruffa. The people of Mohilovia affirm that thefe animals live in hollow oaks, and roll themfelves up in the mofs of the birch, where they fleep all day, and go in queft of their food in the night. Hence it happens, that they are taken in the following manner: 'The huntimen fix nets to the hole of the tree, and make a fire round the root; and as foon as the fmoke enters the hollow of the tree, the fquirrels immediately quit rheir retreat, and being entangled in the nets, fall to the ground; and fo are taken.

Fig. r. Plate XI. reprefents the bignefs of the one M. Klein had. It is, therefore, lefs than the common fquirrel, and bigger than the field moufe; its fkin is very foft, elegantly adorned with grey and dark grey pile; it has large, prominent: black and very beautiful eyes; fmall ears and very Sharp teeth: with which it gnaws very fine; moft of them are mifchievous: but this M. Klein had was pretty mild; it would not catch at the finger, tho' put to its mouth; but there was no trufting it if provok'd. When it does not leap, its rail (which is ant agreeable fight) lies clofe to its back: but when it does it hangs it down, wagging it from fide to fide. It eats bread baked without falt, and the frefh tops of birch are its farout rite food; it neither cares for nuts nor almonds; it make its bed in an elegant manner of the mofs of the birch, and with furprifing facility drawing it with its feet, it lies buriec therein, as it were: and does not fir from thence in the day-time unlefs difturb'd, or prefs'd with thirft. As to its fying inflrument; the fin may be expanded from its fide: like a fail for the breadth of a palm nearly; it adheres to the bending of the hinder feet, but is connekted to a bony artici: lation with the fore feet; at the extremity of this articulation the fin is downy: When it fits quiet, or moves with it natural pace, this articulation, which is parallel with ita

P LATE XI

Royal Society.

feet, cannot be diftinguifh'd; but as foon as it leaps, it is moved, and forms a rigit angle, as if were, with the forefoo:; whence the fikin, as has been faid before, is expanded, tho' likewife aftong pu:iculus , invofus, that pafes under the whole fkin, does much afflt ionping. From this M. Klein gathers, that this little animal dues not properly fly, but that it can leap to places at lome diftance, with greater eale than other animals of the fame kind, and by means of its fails continue longer in the air. With this flying fquirel compas the Vefpertilio admirabilis Bontii in Hift. Nat. É Mid. Ind. Orient. cap 16. Apud isifon, p. 68. Pifo himfelf would doubr, whether it is to be clafs'd among the family of batts, ' becaure, fays be, it is as big as a cat, - its belly and breaft thok and carnous, and down from the ' neck to the extremity of the claws is a continued membrane, - almot like an expanded fat $;$ add, that this fail on the - under fide is membranaceous, cover'd with down, veins and

- fibres; but on the upper fide cover'd all over in a furpri-- fing manner, with very foft pile, like the of a rabbit, of a - grey and dark grey colour; and that it has no plice, as the - wings of other animals have, either to contrat or dilate it; s and that it is almoft three foor in length, and of the fame ' breadrh.'

As to what Rontias afferts, namely, that this kind of vefpertiliones admirabiles fie in flocks, like vild geefe, M. Klein could not perfuade himfelf, onduely conidering the bulk of this animal and its Aructure; but he rather thinks, that fuch anmals come nearer to the nature of lying fquirels, and that they ufe their fails in the fame manner; notwithftanding what Bontius afferts, that about the evening they are obferv'd pendulous in the air, or from trees; but that rather it may hence be proved, that thefe vefperitiones, as well as the flying fquirrels, neep in the day time, and about the evening quit their retreats, leap from one tree to another; and therefore, that when they leap they are obferv'd to be pendulous in the air ; but when they have done leaping, they are found to hang from trees. Befides, the fe vefpertiliones admirabiles may be called feles volantes, with equal propriety', as Gefner call'd rine fciuri here fpoken of, volantes. In fine it is to be obferv'd, that what Gefuer relates from Vincentius Reluacenjis and Olaus Magnus is real matter of fact, namely, that the common fquirrels when they have a mind to crofs any water, put a piece of fome very light wood

3^{82} MEMOIRS of the

upon it, and fitting thereon, fteer with their tail (yet not erect, as Gefner would have it, but continually moving, and not when the wind blows, but when it is calm) and crofs over, as was obferv'd more than once at the inlands of Gotbland:

A Defcription of a Barometer, wherein the Scale of Variation may be increas'd at Pleafure; by Mr. John Rown. ing. Phil. Tranf. N ${ }^{\circ} 427 \cdot$ p. 39.

AB CD (Fig. 4. Plate XI.) reprefents a cylindrical veffel, filled with a fluid to the height W, in which is immerged the barometer S V , confifting of the following parts; the chief of which is the glafs-tube TP (reprefented feparately at $t p$) whofe upper end T is hermetically feal'd. This end does not appear to the eye, being receiv'd by the lower end of a tin pipe GH, which in its other end G receives a cylindrical rod, or tube S T, either hollow or folid, made of any materials whatfoever, thereby fixing it to the tube TP. The rod ST may be taken off, in order to put in its ftead a larger or leffer, as occafion requires; S is a ftar at the top of the rod $S T$, which ferves as an index, pointing to the graduated feale L A, which is fixed to the cover of the veffel $A B C D ; M N$ is a large cylindrical tube made of tim (reprefented feparately at $m n$) which receives in its cavity the fmaller pats of the tube TP, and is well cemented to $1 t$ at bothends: fo that none of the fluid can get in. The tube TP, with this apparatus, being filled with mercury, and plunged into the bafon V, which hangs upon two or more wires upon the lower end of the tube MN, muft be poifed in fuch a manner, as to float in the liquor contain'd in the veffel $A B C D$, and then it will rife when the atmofphere becomes lighter, and è contra. Let the fpecific gravity of quickfilver be to that of water, or to the liquor the barometer floats in, as s to 1 ; and if it be propofed, that the variations of this compound barometer fhall be to the contemporary variations of the common barometer in the given ratio of n to 1 ; this effect will be obtain'd by making the diamerer of the rod ST to the diameter of the cavity of the tube HI, as
$\sqrt{ } \frac{n+s}{n s}$ is to 1 ; which may be thus demonftrated.
Let us fuppofe that the variation ofthe height of the quickfilver in the common barometer, call'd v, is fuch, that a oubic inch of quickfilver fhall rife into the vacuum \mathbf{X} T; in
erder to which a cubic inch of quick Giver muft rife from the veffel V, that is, the furface P muft fubfide fo far, that a cubic inch of water (if that be the fluid made ufe of) Shall enter the veffeI V; by which means the barometer with the parts annexed will be heavier by a cubic inch of the fluid. Now this additionai weight of a cubic inch of fluid will make the whole barometer fubfide (according to the laws of hydroftatics) till a cubic inch of the rod HS, immediately extant above the furface at W, fhall come under it: But the length of fuch a magnitude of HS will exsced the length of an equal magnitude of quick filver in the larger tube X, as much as the fquare of the diameter at X exceeds the fquare of the diameter at H (the lengths of equal cylinders being reciprocal to their bafes) that is, the perpendicular defcent of the compound barometer will be to v, the perpendicular afcent of the mercury in the common barometer, as d to x (fuppofing this the ratio of the bafes) and confequently, will be equal to $d v$. But by this defcent the diftance P W between the furface of the ftagnant quickfilver and the top of the fluid will be augmented by a column, whofe height is $d v$, the defcent of the compound barometer; and confequently, the weight of the whole column of the fluid preffing on the lower furface of the quickfilver (to which the height X is partly owing) will be increas'd by a column of that length, and this increafe would produce a fecond afcent of the mercury at X, equal to itfelf, namely, $d v$, were the fiuid as heavy as quickfilver; but fince it is fuppos'd to be lighter in the ratio of s to I, the afcent of the mercury on this account will only be $\frac{d v}{s}$. But now, as in the former cafe, when the afeent of the mercury was v, the defent of the compound barometer was fhown to be $d v ;$ io here the afcent of the mercury being $\frac{d v}{s}$; the deffent of the compound barometer will be $\frac{d d v}{s}$, and the next defcent $\frac{d d v}{s s}$, and the next $\frac{d^{4} v}{s^{3}}$; and fo on in injnitum: Thercfore, the whole defeent of the compound barometer is to the afcent of the mercury in the common barometer; that is, n is to t, as $d+\frac{d d}{s}+\frac{d d d}{s s}+\frac{d 4}{s}+$, EBc. to 1 ; or as $\frac{d s}{s-d}$ to 1 ;
becaufe the terms of the feries being in geometrical progreffion, the fom of them all is $\frac{d s}{s-d}$. Hence we have $n=\frac{d s}{s-d}$, and $n s=d s \frac{1}{1} d n ;$ that is, $1: d: n+s: n s: \frac{n+f}{n s} ;$ and $I: V d ;$ that Is , the diameter of $S T$ to the diameter of H_{8}, $2 s \sqrt{\frac{n}{n s}}$ to 1.Q.E.D.

Example I. Putting $s=14$, and $n=1$; the variations in each barometer will be equal, by taking the diameter of ST to the diameter of HI , as $\sqrt{ } \frac{{ }^{\frac{4}{2}}}{2}: 1$; that is, as 30 to 29 nearly.
$E x_{0}$ 2. If n be put infinite, the diameter of $S T$ will he to the diameter of HI as $\sqrt{ } \frac{\mathrm{I}}{\mathrm{s}}$ to I ; or I to $\sqrt{ } \mathrm{I} 4$; that is, as I to $3 \frac{3}{4}$ nearly.

The bortom of the veffel V, and the ends of the tube ought to be made rather round than flat for their more eafy motion up and down in the fluid. It will be convenient to have a fmall bafon fixt upon the ftar to contain fhot, for the more eafy poifing the barometer in the fluid.
Experiments, 乃oeron before the Royal Society with the Spiritus: vini xethereus, and the Phofphorus arinx; by Dr. Frobenius. Phil. Tranf. No 428 . p. 55.
 in the athereal firit of wine, which he called liquiar luminofus, and pourd it into a tub of warm water; whereupon it gave a blue flame and fmoke, attended with fo fmall a degree of heat, as not to burn the hand; if put into it. He pour'd fome of his zthereal firit of wine upon a fub of cold water, and fee it on fire with thie point of his fword (with which, being firft heated a little, he touch'd a piece of phophoras. lodged beforehand on the fide of the tub) and after the deflagration the water wàs cold. He then thew'd a very extraordinary proce?s with phofphorus placialis urine, or fick phofpborus of M. Ambrofe Golfrey Hanckerwitro. He had a very pompons machine, which he calls mactiona Frobenigha pro Sefolutione combufibilium, inventa anno-1730. It is really an improvement of the common bell, under which, the oleum fulphuris par campanam is commonly prepared. This machine confifted of a concave plate of glafs. reprefented by A B (Fig. 5 . Plate Xl.) with a hole in the middle C , which communicated by a glatspipe $C D$ with a glafs receiver $E E$, which flood onderneath within it another fmaller one I K, of the fame metal, about 2 inches and $\frac{1}{2}$ diameter; this was heated a little: He then took finall pieces of pbofpborus out of a bafon of water, which he foak'd up with brown paper; fo that the phofphorus might be quite dry, which he put into a fpoon, and flong it into the fmaller golden bafon IK, where it immediately took fire: Then he lower'd down a large glafs bell $\mathrm{L} M \mathrm{O}$, of about 18 . inches diameter, and containing $\frac{3}{4}$ of a flere; the rim LM being exactly ground to fit clofe on the plate of the glafs $A B$: This glafs bell was fufpended by a wooden circle $P(P Q$, to which were faftened 4 cords, that united into one knot at R; and from thence went a rope aver a pulley S, in the crown of the machine, and coming down by the fide of one of the pillars, ferv'd to raife up or let down the bell. At the firft firing of the phofphorus, the whole bell appear'd luminous, and full of flame for a few minutes: When the deflagration of the firft fpoonful was over, he flung in another, and fo on; till there were 2 ounces of $p h o f p h o r u s$ confumed, from which were fublimed a large quantity of flowers into the bell, and fome fell down upon the concave glats A B. The bell at firft felt cold, and never grew more than moderately warm. As the flowers began to cover the infide of the bell to fome confiderable thickneds, the flame was not feen thro' fo brightly as before, but the whole appear'd of a light azure, or dzy colour, which the Dr: likened to the formation of the firmament; the flowers fublimed he likened to fnowe: Then the bell being drawn up agait, and the golden batons taken out, there remain'd in the fmaller bafon an almolt fixed red earth, or caput mortuum. Upon the admiffion of the cold air the frow began foon to melt as per deliquiums, which he compared to the formation of deru and rain; and as it dripped from the infide of the hell upon the concave plate $A B$, it ran thro' the hole in the middle of it C, by the tube CD, into the recever EEF; where it was colleeted in form of a clear tranfparent liquor, fomewhat clammy like gum-water, which be called water. Some of the flowels mixed with any combultible maiter, as common oil-olive, EEC. and put into a golden bafon fet over a lamp, fired immediately, and flamed like pbofphorus, being in reality pbofploorus regenerated, and burnt away to a fubftance like tar. Some of the clammy water was put into a golden bafon fer on a lamp, and by augmenting the fire gradually, in about $\frac{x}{4}$ of an hour's time, Voe. IX. 10
when all the airy bubbles were exhal'd, the liquor became hat d Hike gum, which had been diffolv'd in water, and was nearly dry, and perfectly tranfparent: This he calls vitram molle. Next day he made tome more of this vitrum molle, which he put into a crucible heated red hot, and then fet it in a windfurnace, and gave it the greateft heat for $\frac{x}{4}$ of an hour, when the matter in the crucible appear'd fuid, like molted glafs; be then pour'd it out into an iron pan; the matter continued red hot fome time; when it was peifenty cold, it was hard, traniparent, and bricle like common glafs; but it foon began to relent, and in 24 hours was almoft all turned to water again. The Dr. faid, if this vitrum molle be again entirely refolv din the ait, which will take up near 14 days time, by diftilling off the water, and letting the remainder melt per deliquium again, till atb the faltifh matrer be refolv'd into water, there remainss an infpid whitifhearth, which, flased in a glafs furnace, yieldss a rue fixed glas.

Some Experiments on the Phofphorus urine, wbich may ferve to explain thofe foewn by Dr. Frobenius together with feve. ral abfervations to explain the Nature of that furprijing chemical produetion; by Mr. Ambrofe Godfrey Hanckewitz. Phil Traní. No $428 . \operatorname{pos} 8$.

MR. Hanckevitz repeated the experiment of the deflagra. tion of pigofpoorus under a bell (which was fint hewm the Rogal Soceity by Dr. Frobenius) but he found that a much more fimple apparcous was fufficient than the pompous machine the Dr. made ufe of: He took a frong wide mouth'd glats jar, which ferves as a fand for the concave glats difh to reft on. In the middle of the glafs difh is a hole communicat.Ing with a pipe, which goes down into the abovementioned jari Infted of the golden bafons, a china cup a lithle warmedt, fertes quile as well for burning off the phofpoorus, the laft and main thing is a large glafs bell, which firs nearly clofee upon the glafs difte This bell may be eafly lifted off and or with the hands by an aftitant, without any frame of ropes to fofpend it.
Mi. Hanckeritit touk one ounce of pbofphorus, which he deflagrated in the fame manner as defcribed in Dr. Erobentus? experment, and obtain'd of the white fublimed fowers ter drachms, that is 2 drachms more that the weight of the phof $:$ phorve before defagration; they were fo very light as to theil: volume, that the fuit filled an half pint pot. The ten drachmis

ROYAL SOCIETY.

of flowers being fet in a cool moift place, expos'd to the air, did refolve into a liguiamen, weighing 4 ounces and 2 drachms, which liquainen much refembles ol. julpbur. per campanam; buir contanns an acid falt, more fixed in the fire than any other fate we know of in nature, and having many other properties jeculiarto itfelf, which other acid falts have not. The phof phorus receives this fixed acid from the urine only: For, the Iate of urine is fo fixed, that upon a live charcoal with a blowpipe it plays and rolls about like filver upon the cupels Whereas all other liquid acids evaporate with eafe; this on the contrary is fo fixed as to require a greater heat for its evapora, tion than that which keeps lead in fufion, and the phlogittic part, notwithftanding its lightnefs, is fo firmly and intimately connected with the reft of its principles, as to fuitain a degree of heat equal to that of red hot iron; during which heat the falt fparkles and emits very bright flames for a griod while, which is a very furprifing and agreeable fight'; and this fparkling being over, it remains red hot in fufion, and perfectly tranfparent; and by greater heat may be vitrified, as fhall be fhewn hereafer. He put the abovementioned liquamen into a glafs-retort, which he fet in a balneum maria, and diftilled it to a ftrong infipifation; it yielded only an infipid phlegm, except that towards the lat it came over a little impregnated with the acid, but not fharper upon the tongue than if it had been a mixture of $\frac{1}{2}$ an ounce of vinegar with 4 ounces of watee Then removing the retort with the infpifated liquor into a land-furnace, he increafed the heat gradually; fo as io make the fand and retort thoroughly rea hot, tiil at laft the botom of the retort was ready toi melt, he then leff is till next day, when being perfealy cold, he broke the retore, and found a mott admitable white falt at the bottom, which was fo unied with the alafs, as not to be feparated from it; and fome, was fpreadall nver the retort quite up to the neck, and as anewt as he conld guefs by infpecion, it feemed to be as much in guantily, as the original phofphorus from which it was preduced; its tate was' very tharp and faline: Bur notwithfanding is great fixity in having endurd a melting heat for feverd hours; It relented againin a moit air; and in a few days was entirely refolvid into a biguaten. The phofphorus, after iss defiggracion, leares am almont fixed red earth, or caput monoum, behind is, as is mention'd in Dr. Frobenius's experimenr. Thro she would have imagined that all the inflammable paris of the thonforess had been bume off in the firt deflagration, which
feemed very violent; yet this red earth retains fo much of ân unetuous phlogiftic, that being put over a red hot fire, it fwells up, and keeps in fufion a great while, emitting flames and flathes of light, fo long as it is kept upon the fire : But when cold again, if expos'd to a moift air, it relents and refolves as: the flowers do: For, the acid falt of the urine adheres fo ftrongly to it, that tho' it undergo feveral ftrong ignitious, it will relent again as often, when fet in the air. He took fome of the white falt that fluck to the retort; and in order to try the utmoft degree of its fixity, he put fome of it into a crucible, and gave it a virrifying heat, in which it remained fome hours, but was not yet run to glafs, appearing only like a fixed white earth as hard as ftone, and fhining as if it were juift ready to vitrify: Yet it was fo far fixed, as not to relent any more in the: air ; had no faline tafte, nor was it diffolvible in water. He_{3}, therefore, took another portion of the fame falt of phofpborus, which he kept a longer time in the vitrifying heat, and he found it at laft run into perfect glafs: And thus we fee what a furpriing fubject phofforus is ! Tha fuch an inflamable body confieting of the unctuous and acid parts of the urine, fhould? thus become glafs.

From this remarkable experiment he concludes, that here is at perfect tranfmutation of bodies; the plboflborus being tranfmuted into a fine, tranfparent glafs of a bluifh green colour, coming nearer to the hardnefs of a diamend than any other glafs? and in the fame quantity as the phofpionos at firt made ofe of, which, without any addition, produces this glafs, ounce forr ounce: And here thefe wonderful experiments are brought to their ne plus ultra. He farther adds, that the crude pboopborus without any deflagration, but only cut very fmall, or fcrap-ed fine with a knife, and laid upon a glafs difh in moift air, will in about a week's time refolve into a liquamen near 8 times its original weight; which liquament is the fame in all refpects, as that produced from the fublimed flowers by deflagration, and may alio be vitrified: In feraping the profplorus take great care, not to do it too haftily, lẹt by heating it, you fet it on: fire.

Mr . Hanckerwitz makes the following reflections on the foregoing experiments; as the chenical phofplorus is the principal fubject of them, he gives fome account what phofphorus is, and what it chiefy confifts of. He thinks that pho/ploorus does not naturally exift in animals by iffelf; but when formed out of urine, by oieans of putrifacion and fire, its principal contexture

Royal Society.

 is found to confift of a fubtile acid, concentraked by the falt of urine, and of a fat depurated oil. The phlogiftic part is to nightly connected with the other principles, that the leaft motion, friction, or warmth, fets it on fire. The fixed part feems to confift chiefly in the acid falt of the urine, which is at firf fo intimately concentrated with the phlogiftic part, as in deflagration to be hurried up or fublimed along with it ; yet being by this operation freed from it, it becomes fixed, and cain by no degree of heat be again fublimed. P po /phorus may be call'd an urinous fapo, or toap; as it confifts of the faline and oleaginous parts of the urine: But phofphorus is not to be got in to great plenty out of urine alone; as when the feces alvine are elixirated along with it, and then brought to a meagnad fit for diftillation; nor is there fo great a quantity of phopphorius in the urine of other animals, as in that of men; nor is it to be got from any natural productions, or any parts of animals or vegetables in their crude ftate, before they have undergone concoction in the ftomach of an animal. How far, therefore the liquor gaftricus, the bile and pancreatic juice may contribute to the formation of it , is a difquifition he leaves to the enquiry of phyficians. As to the parts of which phofiporus confifts, it may be confider'd as the foot of a deflagrated oil; and fo may every combuffible fubftance be look'd upon as a kind of p bofploorus, as confifting of inflammable materials. Phofpborus is more inmediately compounded of a falt tending to the nature of fal ammoniac, of an urinous falt, of an acid, and an oily poblogiffon with a fubtile earth; by means of thefe falts exifting in the urine, the feces :lvince are the better elixirated, and thote particles extracted which contribute to the formation of the phofphorus: With thefe fals are very intimately combined in the phoofphorus oleaginous or fat particles, which are the proper materials of that fubtile phlogifon, the true domuncila ignis; and indeed the main conttituents of the whole compound?As to the preparation of this furprifing production, it is done by diftilling the faponaceous magma in a clofe veffel, with a reverberatory fire, much ftronger than that made ufe of for diftilling aqua fortis, or the other mineral acid fipirits; the reftif the proper enclacirefis belongs only to the operator to manage fecundum artem. When this operation fucceeds righty fhere comes over, 1. A thick unctuous oil. 2. A more fubile nil, refembling the oleum philofophorum, which is oil olive diftill ${ }^{\text {d }}$ from brick duft. 3 . The fixed acid enclofed in a very fubtile acid: Near the end of the diftillation comes over that depu-
rated nil, which contitutes the inflammable part of the pho/ $/ \mathrm{p}$ borus, which is not rais'd up till the laft, and that by the continuance of a very ffrong reverberatory fire. But an operator not vell exescifed in the degrees of fire, and who knows not how and when to take away thefe oils apart, hall have nothing but a volatile falt, and fetid oil, and ger at laft only a little unctuous opaque pbofphorus, fuch as the famous Kunckel, Dr. Craffe and Brand did, as they acknowledge in their writings, but not the hard tranfiparent glacial phofploorus. Since Kunckel, therefore, and his followers, were never able to make the true folid glacial phofphorus, it was abfurd for him to write, that he could make it even out of crude indigefted things in their natural flate : For, either this famous man fooke too much ar large, and had never tried the experiments; or elfe he mulf defign to impofe upon the world: For, Mr: Hanckerwitz can buldly contradice him as to this point from the feveral experments he: himfelf made; trot he never found any true phof porras lexcept: infuch things as had undergone digeftion in animals: And he knows himflef to thave been for thefe 40 or 50 years that is, ever fince he left Mr. Boyle's laboratory, the only periun in Eusrope able to make and produce in any quantity the wrue fulid pbofphorus. Mr. Hanckeraitz did not content himfelf to work upon the urinous fupo of man only, but he likewife examin'd the excrements of other animals; as of horfes, cows, heep, EC. and got pbofpborus, but not in fo great quantities as from man ; probably, becaufe they feed on nothing but vegetables? He then made experiments on the excrements of lions, tygers and bears, as alfo on thofe of cats and dogs, which being carnivernus animals, he obrain'd more p boofpboris thence than from other animals; he likewife had ploofphorus from the excrements of rats and mice; and a litte from hens and pigeons. He cmptied the guts of fifh in order to get their excrements, and he had a little ploofphorius from thefe, but none from the fines by themfelves. He was next induced by Kunckel's affertion toutry what he could obtain from crude vegetables, as corn and other fruit : He thought that putrifaction would bring then the ingheft to an ammonic and urinous flate; becaute of the heat that is Yroduced in them by it, but his labour was all in vain. After thefe experiments he took in hand fuffills and mineralst: He began with the common fufill coal, thinking that the phlogifon in this bituminous fubftance, might have been to his purpofe; bue he could find nothing therein like phofphorus, there coming over only a bitumirous oil; and at laft by increating the fire to
the higheft degree, there fublimed fome white talcky flowers, which were neither fulphureous, nor acid, nor alcaline, but in. fipid like talck: And fo he gave up all farther experments on other minerals. He often wifhed for a fufficient quantity of the. fies that Shine in the dark, of which there are great numbers in Italy, efpecially in Tufcany; or of our common glow-worms, which feem to have phofphorus lodged in their bodies.
P PoSpborus is a fubject that occupies much the thoughts and fancies of tome alchemifts, who work on microcolmical fubftances, and out of it they promife themfelves golden mountains: The famous Dr. Dickinfon, phyfician to king Charles H. toild and labourd feveral years in experiments on the flercus bumanum, and he feveral times fhew'd Mr. Hanckerwitz metallic re gulus's he had extracted from it : And this is what M. Hanckewitz has often done himfelf; and no wonder! For we take ina daily with our food, and fometimes in medicines, both mineral and metallic fubrtances, befides what metallic verels, as kettles, pots and difhes furnif: : We fee a dolution of the metal upon a knife after cutting any acid fruit, by the black fopes it hath upon it, and the metallic tafte it communicates to the thing is cuts. Dr. Lifier hath (hewn, that flones from the human bladder being calcined, may have iron extracted from them by a loadfone:-And Boerkave hath made it cvident, by warious experiments, that there is fcarce any terreftrial fubftance, eithes in men, brutes, or plants, which after calcination doth not exhibit fome metallic particles. Dr. Zecher affirms, that from brick earth mix'd with any fat on oil, and calcined in the firc, he bath produced iron: For, it is only the iron that caules the rednets of the bricks, and it may be extracted from them again, 'Moreover, metals are diffolv'd by the falts and moifture of the eath; and fo mix with the nutritious juices of vegetables: Hence it may, in fome refpect, be faid that we eat metals with the greatelf part of our food

There is got from the refiduum after the phophorus is made. a particular dalt which Mr. Hanckervitz calls Sal phopponi. This falt is fixed in fome degrees of fire, yer it may be tublimed in a clofe veflel, which orber fixed falts cannot, except they ftin 1 contain Somewhat volatile in them; but this falt hath no fuch thing in it, neither is it any ways alcaline. How to produce this falt, remains as much a fecret as the phofphorus itfelf: For, he that cannot produce this falt, will never be able to make phoplarus.

There is fcarce any body, out of which a chemical operato cannot produce water and earth, falts, or an acid firit, and ann urinous unctuofity, in greater or lefs quantity, according to the mature of the body; and where there is one of thefe, there is fire to be demonitrated, but not without each other's help. From the preparation of phofphorus we may reflea upon the fuligo, or foot of all combuftible fubtances: For, it is the phlogifton only that burns and produces flame; it is lodged in fulphureouss bodies, and unctuous earths, in pitch, rofin, wax and oils, and in the fat of animals; but the fineft exifts in ardent fpirits, - which when brought to that furprifing fubtilty, as that liquort defribed by Dr. Frobenius in Pbil. Tranf. $\mathrm{N}^{\circ} 413$, do truly deferve the name of etber.

From what has beenfaid, we fee, r. That the faponaccous vargma of urine has great affinity with common fulphur; being? a fulphurcous body compos'd of an acid and depurated oil, join'd with a fmall proportion of earth. 2. Mr. Hanckewitz'ss phofphoreal nagma comes very near the pyropborus of Homberga which wants only the fale of urine in it $;$ in the room of which allum is us'd to fix the fulphur. 3. Hence we may obferve, that urinous particles exift in greater abundance in animals, but the phlogiton abounds moft in vegetables, from which is prepar'd that fine rethereal fpirit shewn by Dr. Frobenius. 4. We: praduce the pblogifton out of fat fubstances, and from the pbloirifon a fuligo or frot, and from the fuligo an urinous falt. 5. From the corrofive oil of fulphur we have a pure fubtile oil, which is intimately combined with it, and is the aetual fire of the thopphorits; which, by barely rubbing, or the leaft degree: of heat, is kindled into flame. 6 . He who knows perfectly the miethod of making phofpboris can choofe whether he will fubstme his magma of urine into phofpborus; or into fulphur; for the difference confifts only in the encheire $\int 5$.
Ob eruations of the repearances among the juxed Stairs, called nebulous Stars; by Dr. Derham. Phil. Tranf. No 428. 3. 70.

DR. Derham having in autumin it 32 made fome gond ob: fervations with his 8 foot reflecting telefcope of the appearances in the heavens, call'd nebulous ftars, communicated them to the Royal Society, to incite others to make farther ub. fervations of them; becaufe he thinks there is much more in them worthy the enquiry of the curious than hath hitherto been jmagined; and becaufe he was apprehenfive he could not purfue
his obfervations much farther, by reafon of his reflecter lofing its excellence and power, by beginning to tarnifh: For, in order to have a good view of thefe neibulofe a ppearances. one muft neceffarily make ufe of very good glaffes, elfe all his labour will be loft, as the Dr. found by experience. Thefe appearances in the heavens have bore the name of nebulofe gtars: But they are neither ftars, nor fuch bodies as emit, or reflect light, as the fun, moon and ftars do; nor are they congeries or clufters of flare, las the milky reay; but whitih aree, like a collection of mifty vapours ; whence they have their name. There are feveral of ithem difpers'd about in divers parts of the heavens. The following catalogue of them, tranferibed from Hevelius's prodromusinftronomix, may be of good ufe to fuch as have a mind to enquire into them.

A catalogue of the Nebulofa.
Their places.
In Andromeda's girdle
In Capricorn's forehead
A nother preceeding Capric. eye A nother following it
One above thefe adjoining to? the eye of Capricorn
Preceeding above the Swan's? tail, and laft in its N . foot S One following a flat above the? Swen's tail, out of the conftellation
On the outfide of Hercules's? leff foot
In Hercules's left Jeg
On the top of Hercules's head At ‘pegajus's éar
In the weftern border of Sobi-? eski's hield
Under the beam of Libra's fcales Above the back of Urfa major
In the jd joint of Scorpio's tail
Between Scorpio's tail and Sa-? gittarius's bow

Vom, IK. 10

Befides thefe Dr. Halley in Pbil. Tranf. $\mathbb{N}^{\circ} 347$. hath mentioned one in Orion's fword, another in Sagittarius, a third in the Centaur (never feen in England) a fourth preceeding Antinous's right foot, a fifth in Hercules, and that in Anaromeda's girdle. Five of thefe fix Dr. Derbam carefully view'd with his excellent 8 foot reflecting telefcope, and he found them all to be phenomena much alike, excepting that which preceeds Antinous's right foot, which is not a nebulofe, but a clufter of ftars, fomewhat like that which is in the milky rway. Between the other 4 he finds no material difference, only fome are rounder, fome of a more oval form, without any fixed ftars in them to caule their light; only that in Orion hath fome ftars in it, vifible only with the telefcope, but by no means fufficient to caufe: the light of the nebulofe there. But it was by thefe flars thatt he firlt peffceiv'd the diftance of the nebulofe to be greater than that of the fixed ftars, which put him upon enquiring into the: reft of them; every one of which he could very vifibly andl plainly difcern to be at immenfe diftances beyond the fixed ftarss near them, whether vifible to the naked eye, or telefcopic only;: nay they feemed to be as far beyond the fixed ftars, as any off thofe ftars are from the earth.

And now from this refation of what he has obferved from very good and frequent views of the nebulof e_{e}, he concludes them certainly not to be lucid bodies, that fend their light to us, ass the fun and moon do; nor the combined light of clufters off Thats, like that of the milky way: But he takes them to be: vaft area, or regions of light, infallibly beyond the fixed ftars, and devoid of them: By regions he means fpaces of a vaft ex."tent, laige enough to appear of fuch a fize as they do, at fo, great a diffance from us. And fince thefe fpaces are devoid ofl fars, and even that in Oniom itfelf hath its itars bearing a very' fmall proportion to its nebuldofe, and they are vigbly not the: caufe of it, he leaves it to others to judge, wherber thefe $n \in b u$ lofe are particular fpaces of light; or rather whether they may not, in all probability, be chatms, or openings into an immenfe: region of light beyond the fixed ftars; becaufe he finds that: moft of the learned in all ages (both philofophers, and divines: too) have thus far concurred in this opinion, namely, that there " was a region beyond the ftars. Thofe that imagin'd there were cryftalline or folid orbs, thought that a colum empyrcum was beyond them and the primum mobile; and they that maintain'd. there were no fuch orbs, but that the heavenly budies floated in the eetber, imagin'd that the ftarry region was not the bounds of
the univerfe, but that there was a region beyond that, which they call'd the third region, and third heaven.
To conclude; it may be of ufe to take notice, that in Hevelius's nebulofe, fome feem to be more large and remarkable than others; but whether they be really fo or no, the Dr, has not had the opportunity of obferving, except that in Andromeda's girdle, which is as confiderable as any he has feen. In Hevelius's maps of the conftellations, the moft remarkable are the 3 near the eye of Capricorn; that in Hercules's foot; that in the third joint of Scorpio's tail; and that between Scorpio's tail and Sagittarius's bow.
Some magnetical Obfervations made in May, June, July, 1732, in the Atlantic or Weftern Ocean; as alfo the Defcription of a Water-fpout; by Mr. Jofeph Harris. Phil. Tranf. $\mathrm{N}^{0} 4_{2} 8$. p. 75.
T HE knowledge of the magnetical variation is of fuch confequence to the mariner, that without it he cannot know his courfe; and were the theory thereof once eftablifh'd, it might be of confiderable ufe for eftimating the longitude in feveral parts of the world, as has been often and very juftly obferv'd by others: But till this be determined, we mutt rely upon obfervations. Some time before, Mr. Harris had taken notice of the imperfections of the common azimuth compafs, and how ill adapted that inftrument was for the purpofe intended: He alfo gave the defcription of a new inftrument, whereby he propos'd to remedy the principal objections to the former; and farther who have convenient opportunities of making experiments this kind, what would be the propereit diameter and weight for a needle and card, and what ought to be their proportional weights to each other when taken teparately; regard being had that the friction be no more than what is neceflary to prevent the card from being too much affeeted by the motion of the fhip. Some obfervations made him apt to think, that a feacard floould not exceed 6 inches diameter, and that moft of thole generally ufed are too heavy for nice experiments, tho' they may be well enough adapted for common purpoles.

In Marcb and April, 1732, the variation at black.river in Famaica was very accurately obferv'd to be from 6° to $6^{\circ} 5^{\prime} \mathrm{E}$. Off the Havanna, about 4° and $\frac{1}{3} \mathrm{E}$. The reft of the obfervations are exhibited in the following table.

$$
D d d=
$$

The inftrument he made ufe of was fo eafily managed, that unlefs the fa were pretty rough, an observation might be depended upon to about $\frac{I}{4}$ of a degree, had the card performed to the fame exactnefs. But by comparing feveral obfervations made under the like circumfances, as to the weather, it feems to him? as if the virtue of the needle was not always of equal ftrength. Sometimes several observations would agree exceedingly well ; ot other times the card would ftand indifferently any where? within a degree or more of its meridian; and thus he observed In feveral cards: He found another circumstance which furpris'd Bim much: The card would fometimes differ about 2 degrees From itlelf between the morning and evening of the fame day; and this difference would continue regularly, as it were, for feveral days, then vanifh for a week or more; and afterwards would return and continue as before. The greatnels of this dif: terence, and the near agreement between the obfervations made in the fame forenoon, or afternoon, amongst themselves, would not give him room to fufpect that it proceeded altogether from an error in obferving: He owns be cannot account for it ; but whatever be the cause thereof, the error was always the fame way; that is, the wefterly variation in the morning would be lefs than in the afternoon: He carefully examin'd if this could be any ways owing to the inftument, or to any iron near the place where it was ufually fer for obfervation; but he was fully convinced it could proceed from neither. He knows not when. cher any foch observations as there have been made before; but he thinks it would not be unufeful, if those who have proper inftruments, and are fufficiently filled, would communicate ap thing of this kind that may occur.

It now appears that the numbers in the foregoing table cannot be ftriclly accurate; but he thinks the error can fcarce any where exceed half a degrce; for, in moft cafes feveral obfervations were made pretty near together, of which he took a medium, making allowances according to the circumftances attending each; and probably, they are as exact as can be well expected from iea-journals; and there can be no fenfible error as to longitudes; their reckoning when they made the land, happening to fall out to a more than ufual exactnefs.

About fun-fet May 2I, 1732, in Lat. $32^{\circ} 30^{\prime} \mathrm{N}$. and Long. 9° E. from the meridian of cape Florida they obferv'd a water-fpout, as reprefented by Fig. 6. Plate XI. Wher it was firf feen, it was whole and entire; and much of the fhape and proportion of a fpeaking trumper; the finall end being downwards, and reaching to the fea, and the big end terminating in a black thick cloud: The fpout itfelf was alfo very black, and the more fo the higher up: It feemed to be exactly perpendicular to the horizon, and its firdes perfectly fmooth, without the leaft ruggednefs; where it fell, the fpray of the fea rofe to a confiderable height, which made fome what of the appearance of a great fmoke. From the firft time it was feen ir continued whole about a minute, and till it was quite difflpated, about three minutes: It began to wafte from below, and fo gradually up, whilft the upper part remain'd entire, without any vifible alterarion, till at laft it ended in the black cloud above: Upon which there feemed to fall a very heavy rain in that neighbourhood: As it wafted, the bottom of the remaining part was irregular, fomewhat like the trunk of a tree broke afunder: There was but little wind, and the fky elfewhere was pretty ferene. The fout was judged to be about two leagues off; and Mr. Harris thinks the angle under which the fmall end appeard, muff be at leaft 20^{\prime}; according to which eftimation, its thicknefis muft be upwards of 60 yards, and its height or lengthabout $\frac{3}{4}$ of a mile.
An Account of an Earthquake, that in rysr infofted Apuliz. and almoft all the Kingdon of Naples; by Dr. Cyrillus. Phil. Tranf. N° 428. p. 79. Tranfatel frons the Laitn.

DR. Cyrillus made the following fhort abftract from the oblervations fent him by Dr. Rofettifrom Apulia, and from thofe of others wholived at Giovenazzo and Foggia.

入arc\%

March 9, 1730-I, O. S. at 4 in the forenoon, there was an earthquake almoft all over the kingdom of Naples, but it was felt moft in Apulia: While it lafted, all thofe appearances taken notice of by the ancients, were here alfo obferv'd : As firft a tremor; then a pulfe ($\sigma \phi u f \mu 0 \xi$) according to Arifzotle, or a fuccuffation, as P ofidonius from Seneca calls it; and laft of all an inclination, or a nutation of the earth, like that of a fhip, as it were: Thefe various motions fucceeded one another alternately for three minutes and a few feconds. It was not obferv'd by Dr. Rofetti whether the nutations and ofcillations were made in parallel circles of the earth, as modern philofophers have conftantly obferv'd of this phenomenon; which is a confiderable argument for eflabliphing the diurnal motion of the earth: This indeed the Dr. himfelf and others carefully obferv'd both in this and other nutations of the earth. At that time the air was overcharged with denfe, low, and immoveable clouds, which were afierwards diffipated by a gentle northerly wind: Next day the fun Shone more languid, as if he had been cover'd with very thin clouds, tho' there were then none in the heavens. This phenomenon was likewife obferv'd in the following ftronger Thocks. The fithermen near the fhore obferv'd the fea fwell fuddenly, and they weather'd out a ftorm from Siponte and $\mathcal{B a r l e t t a}$, that is, nearly, from the north, without any wind, biut not without apprehenfions of being fhipwreck'd.

March io, at 8 o'clock in the forenoon, there happened a new, but a fhorter, and withal a weaker earthquake in the fame province; but not fo weak but that it was felt at Naples. This was preceeded by a kind of accenfion, or thort corufation about mount Garganus, obferv'd by the inhabitants of Terradi Gari, and which infenfibly vanith'd into fmoke or darknefs. In the parts about Foggia a ftrong N. E. wind generally preceeded this fecond earthquake, as allo the others what happenced afterwards in April, October, and November; tho fometimes the air were altogether calo. The number of houies that fell, and of men buried in their rains was confidetable; no lefs than 600 : The town of Forgia feem'd to be the centre of thefe fhocks: For, there the thocks and downfall of the houfes were more confiderable; and from thence they diffus'd themfelves to more remote places, the impotus gradually remitting; fo that it may be faid that the propagation of this earthquake was fuc-
ceffively diminifh'd (unlefs the different folidity and interruption of the interjacent earth caufed any alteration) in the duplicate ratio of the diftances, according to the common laws of nature in other kinds of motion; which was carefully obferved in the ofcillations of pendulum's placed at different diftances from Foggia: For pendulum's of a palm in length at Afcoli di Satriano, and at Gicvenazzo, and applied to a graduated femi-circle, and moving in the concaffions of the earth, erred more or fewer degrees from the centre of ofcillarion, according as they were more or lefs diftant from Foggia: For, the number of thefe degrees (greater in the nigher Afcoli, and lefs in the remoter Giovenazzo) anfwer'd nearly to the duplicate ratio of the diftance of thefe places from the centre of the earthquake: And hence it likewife happened, that when there was but a very night trembling at Foggia, the pendulum moved Nowly at A fooli, but ftood fill at Giovenazzo.

In almoft all the fhocks for the year, it was conftantly obferv'd, that a cralhing in the air and a horrid noife preceeded them; Pliny, lib. 2. p. 80. alfo obferves, that fometimes terrible founds, bellowings, and thouts like human ufhered in earthquakes. This crafhing in the air was diffus'd in a contrary direction: For, whereas the parts of the earth were fhook by a motion from the centre to the circumference; fo on the contrary, the motion of the air plainly converged from the circumiference to the centre; which phenomenon may have yielded no fmall matter of fecculation to naturalifts: The Dr. would obferve that this is different from what Arifotle thought was the cafe with meteors, namely that an external wind muft contribute to an earthquake, as according to him the coaft of Acbaia was fhook by the conflier of a north and fouth wind; unlefs, perhaps, you would fay, as fome have fufpected, that at leaft the night and ofcillating earthquakes produced after ftrong eafterly winds, might have been owing to the retarded diurnal motion of the earth; at leaft in that traft where the wind blew.

Laftly, it is worth obferving in this earthquake, that near a country farm of Cartbufians, call'd Tré fanti (whofe houfe had by the earthquake been levell'd with the ground fince plentiful Atream a new foring of maddy and hot water. This indeed,
indeed, is no new thing, nor was it unknown to the ancients: Since we find from their accounts, that waters burf out when? the body of the earth opens, in the fame manner as water enters thro' the feams of a fhip; nay, they give an account not only of fmall ftreams, but deluges of water that drowned whole cities; which may feem more probable to thofe who hold with Thales, according to Seneca, that the earth, fupported by the waters, fometimes hoats like a Ship: But thefe: things will feem abfurb to fuch as know the true fructure of the terraqueous globe. The water that burft out in Apulia began to dry up gradually, and in a month's time itt quite difappeared; but the dry fand, even for fome times, retained a fulphurous fmell. Thus Pliny lib. 3I. 4. affirms; that earthquakes pour out and drink up waters: Wherefore, it is not furprifing, that we have accounts of lakes, fountains, or rivers breaking out, where there were none before, and ofothers being dried up. Ir was univerfally reported, that: fhallow wells did at the time of the firt earthquake throw: out their waters from their wide mouths: Yet it is not at all! credible that from the greateft Shock water fhould burft out (for, this could not have happened without at leaft over-turning and entirely deftroying the kingdom of Naples) butt that probably, new water fpringing up in the bottom of thefe: wells, as in other places, and filling their cavities, it wasi thrown out.

In fine, the water which, as has been faid above, hadl burft out near Iré Santi, when examined, exhibited the: following phenomena.

1. Bulk for bulk by the areometer it weighed 82 grains more than rain water; and only 15 grains more than the: water of a brackifh fountain in that place. 2. A pound oft the fame water diftill'd to drynefs left behind in the bottom of the veffel half a drachm of a fubitance inclining to the nature of crocus martis, fprinkled over with a fcruple of a white and infipid earth : The loadfore attracted fome readins particles from this duft after drying it. In the diftillation a fulphurous fmell was pretty fenfible. And hence, atter the experiments of the celebrated M. Lemery, we have a new acceffion of arguments, that fubterraneous fires and vulcano's may be eafily accended by the commixture of fulphur and iron; and confequenty, that carthquakes may be produced by the fucceffive kindling of latent fires. 3. In fine,
co dractins of the galls, called di levante, and with which ink is made, reduced to a very fine powder, and infus'd for
four hours in two pounds of that water, began to tinge it of a light azure colour, with a fubfequent precipitation of the powder.

A Lunar Eclipfe obferv'd at Rome, December r. ${ }^{-1} 1732$. by S. S. Revellus, Borario, and Manfredi. Phil. Tranf. N° 428. p. 85. Tranfated from the Latin.

T
HE obfervations were made with a telefcope of 10 palms in length.
True time
p. m.
H. is

84528 The penumbra now fenfible.
49 14 The penumbris denfer.
${ }_{51} 19$ The beginning of the eclipfe.
44 Grimaldus begins to immerge.
5247 Entirely hid.
54 Galileus.
5348 The fhadow at Gafendus.
$56=$ Gaffendus entirely hid.
5723 Scbickardus.
(9) 243 Keplerus.

453 Ariftarcibus.
5 - Lansbergius and Mare bumorum almoftentirely hid.
6 Is Bullialdus.
53 Capuanus.
$\Rightarrow 8$ The fhadow at Mare Nubium.
8 2 Copernicus begins to immerge.
29 The fhadow at the middle of Copernicus.
1027 The fladow at Eratofbenes, and Copernicus entirely hid.
14 I2 Tycho begins to immerge.
45 Infula Sinus medii.
$15 \quad 37$ Heraclides.
$16=2$ Tycho is now hid.
$18 \quad 12$ Tymocbaris.
204 Arcbimedes.
214 Harpalus.
23 10 Manilius.
16 Helicon.
40 Piato.
Vot. $1 \mathrm{X} . \mathrm{N}^{0} 12$
$E \in$
True
 The duration of the whole eclipfe was $3^{\text {hi }} 35^{\prime} 3^{6 \prime}$

Some phafes of the immerfion by another obfervation with a reflécting telèfcope,
True time.
p. m.
$\mathrm{H} . \quad$,
$8 \quad 50 \quad 13$ The penumbra denfé.
$51 \quad 28$ The obfcuration certainly began.
548 Grimaldus entirely hid.
32 .The fhadow at the middle of Galilecus.
9 - 5° Keplerus entirely hid.
2 I 8 The fhadow at Ariftarcbus.
337 Ariftarchus entirely hid.
83 The fhadow at the beginning of Copernicus.
920 At the middle of Copernicus.
10 32 Copernicus entirely covered.
1447 The fhadow at the beginning of Tycho.
23 II At the beginning of Manilius.
26 At the beginning of Plato.
55 The fhadow thro' the middle of Plato and Nanilius:
2440 Plato entirely covered.
3935 The fhadow at the beginning of Proclus,
40 I8 The fhadow at Hermes.
41 - ${ }^{4}$ Proclus entirely covered.
31 The fhadow at the beginning of Mare Crijum.
4420 At the middle of Mare Crifum.
46 I5 Mare Crijum entirely immerged.
493 The moon entirely immerged.
An Eclipfe of the Moon obferv'd in Fleet-ftreet, London, Nov, 20. 1732. at Night; by Nir. George Graham: Phil. Tranf. $\mathrm{N}^{\circ} 4^{23 .}$ p. 88.

	H.		"	
The beginning at	8	1		apparent time.
Immerfion.	8	59	30	
Emerfion.	10	38	-	
End	11	37		

Obferv'd with a fmall telefcope about 18 inches long, that magnifies about I 3 times.

Mr. Hodgon at Chrift's hofpital did with a 4 foot telefcope obferve the beginning at $8^{\mathrm{h}} \mathrm{I}^{\prime}$ and $\frac{1}{2}$, and the end at $11^{\mathrm{h}} 3^{6^{\prime}}$ and $\frac{1}{2}$.

The Bills of Mortality for the Town of Drefden, for a Cen:tury, viz. from 1617 to 1717, containing the Numbers of Marriages, Birtbs, Burials, and Communicants; by Sir? Conrad Sprengell. Phil. Tranf. No 428. p. 89.

$\begin{aligned} & \text { The } \\ & \text { Tear. } \end{aligned}$	Coup. marr.	Chriftened.	Buried. ${ }_{\text {ec }}^{\text {Com }}$	Commu.nicants.	Who receiv'd Holy Orders.
1617	120	478	639	21507	${ }_{\text {were }}{ }_{\text {ghom }}$ whom 37
1618	175	466	400	22567	31
1619	148	530	33^{2} 2	23221	34
1620	119	546	472	22850	36
1621	146	546	491 2	23988	18
1622	144	521	38 I	24032	16
1623	127	54 I	421	25864	20
1624	146	576	411	25899	15
1625	141	543	481	26319	21
1626	151	580	407 befides 333 who died of the Plague.	29201	27
- 627	162	548	4 I 2	26677	29
1628	124	543	469	27085	1%
1629	I 36	599	39^{8}	28525	18
1630	115	599	480	28446	28
1631	163	599	844	30241	23
1632	161	515	$\left\|\begin{array}{l} 31 \\ \text { I } 29 \\ \text { the } \\ \text { the during } \\ \text { the Whes of } \\ \text { Plague. } \end{array}\right\|$	32416	46
1633	412	425	4585 The Troubles of War and the Plague ftill con tinuing.	27688	57
5634	34.6	531	721	123165	47
1635	5205	523	597	24942	24
1636	I 53	531	594	23904	26
1637	15^{6}	613	1897 The Plague breaking out again.	28888	19
1638	205		531	26744	43
1639	122	602	I 845	28702	24
$\times 640$	192	$2+51$	1935	126032	30

Royal Society.

In which year they began to deliver in the number of communicants at Old Drefder.

16481	$190 \mid 714$	606	137097	23
I 6491	179664	597	39198	21
1650	1971752	494	39588	26
1651	199713	511	39773	19
1652	2067132	4.50	40389	24
$\times 53$	193673	535	40924	20
1654	194691	558	41789	23
1655	$180 / 725$	525	4.0253	26
1656	212708	560	43086	5
1657	163610	663	44783	30
1658	1861707	518	43117	16
1659	194703	599	43297	29
1660	219738	542	4511 I	23
1661	1967091	649	45137	28
I 662	180733	637	45313	27
1663	193640	620	45640	3 I
1664	176 682	662	46115	42
1665	2291734	699	46667	33
I 666	188699	824	47194	32
1667	247754	823	47325	20
1668	2371739	703	48403	17
1669	215833	794	48755	27
1670	251302	776	50121	22
1671	2621844	743	51500	26
1672	27518.6	909	51650	32
1673	25239 I	909	152483	26

Royal Societyo

	$\begin{aligned} & \text { Coup } \\ & \text { marr. } \end{aligned}$	Chriftened.	Buried.	Commy- nicants.	$\begin{aligned} & \text { Who r } \\ & \text { Holy } \end{aligned}$	
1693	309	rog ,among whom I Turkiß man:	1071	59921	ng whom were.	29
169413	366	ror 4,among whom 2 Turkiß boys.	1426	61288		28
1695	329	I 225	1227	62230		5
1696	293	ri62,among whom one black man.	1055	64491		23
1697	480	1206	1070	6 rry		30
1698	33^{2}	1007.	919	59030		25
1699	295	963 , among them one black woman $\&$ a Lapland man 80 years old.	İ39	59662		3^{8}
1700	292	975, a mong them I Turkiß woman. 2 'Turkiß men, and r ferw.	II98	59369		8
1701	324	9.91	992	6rip6		2%
17,02	210	ro86, among them a F̌ewefs.	946	6.0225		7
1703	288	I 049, among them a Turkib woman.	1078	62636		3 x
1704	279	$\begin{aligned} & \text { IIII, among them } \\ & \text { a black woman. } \end{aligned}$	964	62971		39
1705	354	IO4.4, among them a J̌er.	1346	64262		30
1706	313	1104	1098	63894		
1707	296	1034	1523	63120		2
1708	350	1256	III9	66519		30
1709	34^{8}	II4 1 , among them a Ferw and his wife.	1340	67021		1
1710	337	II 4 I, among them 2 Jeros who apoftariz'd afterwards	1214	$4 \longdiv { 6 9 1 9 7 }$		
1711	313	118 1	11222	170123		

The

MEMOIRS of the

Sum total from 1617 to 1717 inclusive.
Married 24294 couples. Chriftened 83412 . Buried 98611. Communicants 4654064; among whom 1686 who received holy orders.

The Bills of Mortality for the Inperial City of Augsburg, from the Year 1501 to 1720 inclufive, containing the Number of Birtbs, Marriages, and Zurials; by Sir Conrad Sprengell. Phil. Tranf. $\mathrm{N}^{\circ} 428$. p. 94.
N. \mathcal{B}. The years mark'd + denote the time of plague, or contagious diftempers.

	The Year.	Born.	$\begin{array}{\|c} \text { Coup. } \\ \text { matre } \end{array}$	Dice.		$\begin{aligned} & \text { The } \\ & \hline \text { Year. } \\ & \hline \end{aligned}$	Born	$\begin{aligned} & \text { Coup. } \\ & \text { morr. } \end{aligned}$	${ }^{\text {Died. }}$
	1501	1764	043	1984		$\frac{1531}{}$	1853		1
	1502	1984	440	1543		i 532	1640		1543
	1503	1764	542	1646		1533	1766	,	1172
	1504	3048	¢	4765		I534	1985		82
	150	2464	648	3564		I5? 5	1410	593	13000
	150.		764	950		I536	1515		1492
	150	18	665	1754		1537	1519		1462
	150		44	1844		1538	1518	63	1565
	15		347	17		1538	1922	63	75
	r 51	19	765	1979		154	1842	64	1585
	1511	28	896	4870		15	1283	496	1208
	1512	1768	78	2980		I 54	1439		1472
	1513	1875	760	1960		I543			83
	15	1985	645	1740		I 544	1473		1179
	15	18	692	I 622		I 54	1483		1065
	1516	1470	410	1732		1546	r603		1356
	1517	1890	419	1893	+	1547	1646	630	3480
	I518	1980	418	1872		1548	1705	49	1227
	151	1760	419	1893		15	2038		¥ 757
	1520	1542	320	1760		15	1205		1490
	1521	2970	322	3895		${ }^{1} 5$	1867		1455
	1522	17	372	1980		15	1567		1477
	1523	1822	382	1970		I 553	I677	498	1665
	I5	1824	392	1989		155	1270		1464
	r52	I 827	43)	1515		155	1497		1340
	1552	18	436	1418		15	I 58	447	1239
	1527	1833	438	1522		15	520		1310
	1528	I763	439	:632					148
		1783	440	1733			176		r 555
				18		1			1990

The

Sar	Bom. Coupt		${ }_{\text {The }}^{\text {Ther }}$,	Coup Did	
${ }_{1561}$		1	97		O8 393		
${ }_{5} 562$	171		15		52,380		
1563	1869 [460 2	2680					
${ }_{15} 6$	1872536	2, 4	1		621499	4991	
1565	1779	1488	160		,		
1566	I861 418	15×8	16		4684		
1567	$1723 / 424$	1718					
15	175	70	r6		55139		1298
15							
157	188	I640	16				1371
1571	152	3071	16				
1572	1634690	3306	1608				
1573		1371	16		$4{ }^{8}$	4771 I	
		1520			618		
	1563	15					
		245					
	17	r 427	161		572437	37	
157	168	1410					
	1629388						
	1635416	1522					
	,				65542	429	1514
	$1627,4 \mathrm{~T} 4$	153					
15	x497452	124.					
1584	16I4.341						
15	1568433						
15	15831520						
	154						
	1593420	146					137
1589	1166442.6				48		
15							
1591		1352					
I59	1632		162		Io		
15							
	1629396	1560					

Royal Society.

	Born.						
			8	17	837	202	
	949	307	842	17			94
	1013	240	805	171	866	309	1024
	916	225	908	171			
	8	2	805	1717			
	982	23^{8}	811	1718		28	68
							997
117							

Mr. Maitland makes the following remarks on the afore faid bills of mortality for the cities of Drefden and Augs: burg.

By the firft feptenary of the centenary of the bills of mor tality for the city of Drefden from 1616 to 1624 , it appears that there died in that electoral capital 3136 perfons; and in the laft feptenary of the faid centenary, from 1709 too 1717, there died 8836.

By the firft feptenary of the fame centenary of the bills of mortality for the imperial city of Augsburg, from 1616 te I624, it appears, that there died in that city i1 371 ; and in the laft feptenary from 1709 to 1717 , only 6297 : Where by is evinced the great viciffitude of fublunary affairs, in the vaft difparity between the aforefaid cities. For, as the former has increas'd near two thirds in the number of its inha-. bitants; fo bath the latter decreas'd near one half in the faid face of time.
An Account of Symptoms arijing from eating the Seeds of Henbane, with their Cure, \&c. and fome occajional Remarks; by Sir Hans Sloane. Phil. Tranf. No 4290 p. 99.

IN 1729 a perfon came to confult Sir Hans Sloane upon am accident that befel four of his children, aged from fou years and a half to 13 years and a half, by their eating fome feeds they had gather'd in the fields, which they miftook for filberts: By one of the capfules, Sir Hans inftantly knew it to be that of the byofryamus niger, vel vulgaris $\mathrm{C} . \mathrm{B}$ (or the common henbane) which bears fome grofs refemblance to the husk of a filbert, and the feeds refemble thofe of the poppy. The fymptoms that appear'din all the four were great thirft, fwim:
fwimmings in the head, dimnefs of fight, ravings and profound fleep; which laft in one of them continued for two days and two nights. Sir Hans order'd them all to be bled, blifter'd in leveral places, and afterwards purged with a medicine, compos'd of elect. lenitiv. ol. amysd. dulc. flor. Julphur ©f fyr. for perficor. which operated both by vomit and ftool : And by this method they perfectly recovered:

The delirium occafioned by thefe feeds differs from the common, and in fome meafure agrees with that produced by the duitroa, a fpecies of framonium, and by the bangue of Eaft India, a fort of hemp: And they are all different from that kind of diforder caus'd by the rubbing with a certain ointment made ufe of by witches (according to Lacuna, in his verfion and comments upon Diofcorides) the effect of which (as he was told) is to throw the perions into a deep fleep, and make them dream fo ftrongly of being carried in the air to diftant places, and there meeting with others of their diabolical fraternity, that when they a wake, they a tually believe and have confets'd, that they have performed fuch extravagant actions.

Here Sir Hans Sloane gives an intance of the great virtues of henbane-feeds in the tooth-ach. A perfon of quality tormented with this racking pain, had an empyric recommended to him. The quack convey'd the fmoke of burning henbane-feeds, by means of a funnel, into the hollow tooth and thereby remov'd the pain: But at the fame time there dropped fome maggots from the tooth. (as be pretended) into a pail of water placed underneath for that purpofe. Sir Hans procur'd one of thefe maggots, which he fent wrapt up to M, Leervenhook at Delft in Hollawd, where it arriv'd fafe and alive. Upon examination M. Leervenboek found it to be entirely like thofe bred in ordinary roten clueefe: Wherefore he procured fome of thefe latter, and carefully fed both them, and that one Sir Hans had fent, on the fame cheefe; and they were all, according to the ufual methods of nature, turned into fmall fiarabei: So that:there did not appear the leaft difference between them eiffier when maggots or fcarabaei, both being return'd Sir Hans from Holland.
Upon the whole, tho' the fmoke of the henbane-feeds cur'd the tooth-ach; it is bighly probable the maggots had been convey'd thither, and let drop into the water by forne night of hand.

414

 MEMOIRS of theAn AbjtraCt of a Fournal of Meteorological Obfervations, made at Petersburgh, from Nov. 24. 1724, to June 23, 1725, by Mr. Confett; witb Meteorological Obfervations at Lunden in Sweden, in 1924 ; with Remarks thereon; by Dr. Derham. Phil. Tranf. ${ }^{\circ}$ 429. p. 101.

THIS journal contains obfervations made three times a day of the barometer, the winds and their ftrength, the weather, and (afier April Is.) of the thermoneter. Mr. Con/ett, from the beginning, noteth down the barometrical variations, but Dr. Derbam knows not his divifions and degrees till Decenber 18. at 3 h . p. m. and then the barometer was at 30.66 . wind N. E. I and fair. From November 24, to the clofe of the month, the weather was cloudy with fnow, and a deep fnow on the laft day, and fair on the 28. the winds wereeafterly, and N. E. off two and three degrees ftrength, till the 29 th and 30 th; and then S.E. 3. S. 4. and S. W. ${ }^{3}$. In December it was cloudy with। fome fnow, till December 8. and 9. which were fail days; then: cloudy on the Io. and 11. and rain in the evening; after this fome cloudy and moift weather; fome fair weather till Decernber 23. and then hail; wind S. W. 3. The next dar finow; and the reft of the month fome cloudy and dark weather, with fnow and frome fair weather. The barometer ever fince the 18 th hath been above 30 inches, and on December 26 it was 30. 84 ; on December 30. 30 . 96. and 35. O0. and laftly on December 31. it was 31. 12. On the 3d of fanuary, 1724.5, the baro meter was at 30.65 . on the $4^{\text {th }}$ before noon at 3 r. 32 ; after noon at 3 I. 3σ; but on the s th it was in the afternoon 31. 59 ; the wind at S.W. I. and cloudy weather ; which is the: higheff range of the quickfilver in all the obfervations; nay, the highert he ever met with any where, and at any timear O_{0} the other hand, the lowefl range was on February 25, at 28. 28. wind W. 4. and fnow. The baroneter was above 30 inches all the beginaing of Fanuary, till the 18 th; and then it gradually fell to 28 . 36 . The winds were for the moft part in lome wef terly point till Ganuary : I . and then S. E. 2. with fair weather, and a hard froft for a week; the weather before the 1tth being cloudy and moift, with fome frow now and then; and a little rain, on Fanuary r. All the reft of 7 fanuary was for the moft part cloudy with frow ; and but litte fair, and that. attended with froft. In February the barometer continued high, till by a gradual defcent it came to 28.28. On February 55 and 17.
the wind wefterly 3 and 4. But on February 25. it fell to 28. 28. wind W. 4. The greateft part of this month the weather was cloudy, and fometimes with thick darknefs, frequent fnow, and now and then fair, with fharp frof. All March the barometer was above 29 inches; fometimes above 30 : The greateft part of this month was cloudy, with frequent fnow, and fome fair weather, with fharp frofts; the winds were variable, and their ftrength about 1 or 2 degrees all the month, and feldom at 3 degrees, nor calm at any time. All April the barometer was above 29 inches, and under 30 ; in the beginning of the month, fnow and eloudy, with fome fair, and fharp frofts, till April I3. when Mr. Confett faith, the continual winter-frofts were thawed; and that on the I ; th they left off the fires in the ftoves. After this fome cloudy weather, fome rain and forne fair; the winds were variable, commonly I and 2 ftrength ; and now and then 3, and not any day o. From April the 16th Mr. Confett obferved the thermomerer which (being one made by Mr. Hauksbee) ftood at 5 I , which is between cold air and temperate; the freezing point being at 65 ; it then rofe for fome days to 46 and 40 , till on the 22 d it was at 36 ; and towards the end of the Month it fell again to 4\%. All the Month of May the range of the barometer was between 28 and 29 inches; and for the moft part above 29. 50. The thermomerer was on the Ift day at 52.8 . and continued rifing to 50 on the 7 th, where if: ftwod to about the $14^{\text {th }}$, and then rote to 40 for the following days, being at 40.25 . on the 17 th in the morning, the wind S .2 . and fair, when in the evening of the fame day it rofe to 30.340 the wind W. 2 , with rain; it foon got down again to 40 for 1everal days; but from the 27 th to the end it was about 30.50. This month had much more fair weather than any of the preceding months, and fome cloudy weather with thowers, and fome heavier rain. In funs the range of the barometer was (as in the laft month) berween 28 and 29 inches, but more frequently under 29.50 . than it was in that month. The thermometer was all this month between 40 and 41 , only on the ift, $2 \mathrm{~d}, 3_{3} \mathrm{~d}, 8$ hh, $1 \mathrm{xth}, \mathrm{X}_{3}$ th and 23^{d} days, it was a little above 3 I , bat never fo bigh as 30 , which is between warm air and hot. On Fune 2d, there fell rain wirh hail: And (as the Dr. has obferved in fome of the Tranfactions) that cold in fummer produces rain; fo there fell a great deal of rain on flune 5. after which, fome days were cloudy, with frequent fhowers, and many days fair, to Jume 2 jo on which Mr. Confett's obfervations end.

418

M E M O I R S of the
Dr. Derbam wifhed he could have had fome obfervations in the more foutherly parte, to have tallied with thefe.

The meteorotogical obtervations made at Lindea, in Srveden in 1724, that tally with Mr. Confett's are follows. The range of the mercury in the barometer, which feems to be different in both places, as far as can be judged of by the few obfervations that tally with one another, which is only from Dec. 18. to the clofe of that month, Mr. Confett's barometrical divifions before that time not being intelligible; and in all that fortnight's time, the Pete"sburg b barometer was above 30 inches, and once above $3^{\mathbf{1}}$; whereas that at Lunden was but a little above 29 , and but once at 29.6. And indeed, throughout the whole year, the Lunden baremeter was only now and then below 29 inches, and much fellomer above 30 . He finds in thefe obfervations a great conformity between the winds; efpecially, when ftrong for fome time, and when they have been for fome time in or near the fame quarter-; and this he has oblerved in other places. As to the weather, no good judgment could be made of it in the fpace of 5 weeks, which is all the time in which the obfervations tally: Only the Dr. takes notice that thunder was more frequent at Limden than P Petersbirg b daring that time.

The Dr. now proceeds to the whole year's obfervations at Lunden; and he begins with the barometrical ranges, which will be beft feen and compar'd by the 2 following tables; the firft of which, namely, the mean heights of the mercury, ©o which the Dr. has added the higheft and loweft ranges in each month; as allo the author's mean of histhermometrical ob fervations, tho', he owns, he fearce underftands the divifions of his thermometer.

[^1]\square

\qquad

The heights ot the barometer at Ketersburgh, A. D. 1724 and 1725.

High Mean Low					
	3 I.r2 3 T. 59	30.36	30.3529 .87	29.99	29.81
	30.6129 .97	29.32	29.76129 .57	29.67	29.4i
	30.11128.36	28.28	2.9.18129.28	29.35	129.10
The heights of the thermometer					
Mean	- -	-	45.	40.5	840.0
			54.	32. 8	8140.63

By comparing thefe 2 tables together, it is maniffit that the afcents of the mercury are much greater at Tetersburgh than at Lunden; and that the defcents are nearly the fame: So that the range of the barometer at Petersburgh is anches 3 I hundredth part; but at Lunden only s inch and about 8 tenths. And the greateft height of the thermometer at Peeersburgh was on May 17, 30. 34.
As to the winds and weather at Linden in 1724: In fanuary the winds were, for the moft part, about the wefterly and foutherly points, and frequently very boifterous. The weathes was fome cloudy, fome fair with frequent rain, but no cold taken notice of till Fan. 弓о. In Feb, the winds frequented the fame points as in Yan. but they lay more between the N . and \mathbb{E}. than then; and they were ofentimes very boifterous. In this

Voz. IX. II
month fnow was frequent, and now and then thunder, and bu, little fair weather. In March the winds were very variable and fometimes flrong; the weather more ferene than before, with fometimes fnow, and towards the latter end rain, and now and then a froft. In April the winds were more northerly and eafterly than in March and not very ftrong. The greateft part of the month was freezing, and fair with fome days of tain with thunder. The beginning of May to the 16th the mornings were frofty, with fome rain, fome fnow, and fome fair the reft of the day; after the isth fome rain and fome fiow; and towards the end of the month fairer. The winds were variable, brifk, and about the $23 \mathrm{~d}, 24$ th and 25 th flormy. In Fune the winds variable, pretty brifk, and ftormy on the ioth, 11 th and I_{2} th ; then the weather was for the moft part fair till the 1 sth; after that cloudy, and but little fair, with frequent and plentiful rain. Fuly alfo was a cloudy, wet month, with but little fair, and fome thunder, which was fometimes violent: The winds, for the moft part, were between the W. and S. and moderate. In Aug. the winds were more northerly and eafterly than in $\mathcal{F} u l y$; and fometimes between the weft and fouth, and moderate in all the points, The firft 9 or 10 days were, for the moft part, fair, 9 or 10 days after that, more cloudy, rain, lightning in the evening, loud thunder and rain in the day, and fome in the night; and from the 2 oth to the end of the month fairer, with cloudy, hail and rain. In Sept. the winds frequented the northerly and wefterly points, were brik, and fometimes ftormy; the mornings, for the moft part, cloudy the firft 9 days, and fairer the reft of the days. The greateft part of the reft of the month was rainy, with plenty of frow on the 25 th; then rain, which consinued during the firft 9 days of OEtober; the reft of that month was cloudy, with hoar frofts now and then, and fome fair. The winds varied often, but were the moft frequent in fome of the foutherly and wefterly points, and not very high. In Nov. the wind were fomerimes in the wefterly and frourherly points, but more frequent in the northerly and eafterly, for the moft part, of a moderate ftrength. The firft 9 days the weather was cloudy, then fnow and froft to the 17 th; then to the end cloudy, fnow, hoar-froft, rain, and but little fair, and that in the morning. In Dec. the winds were moderate, and often in the foutherly and S. W. points, feldorn northerly. The s firf days were cloudy and wet; then frow and froft the 6 th, th and 8 th ; then cloudy to the 13 th ; then hoar froft and fair on the 14 th, 15 th and
soth; then cloudy with thunder, rain, frow and frof, at diver ${ }^{8}$ times, in the reft of the month.
An Account of the Damp Air in a Coal-pit, dug roithin 20 Yards of the Sea; by Sir James Lowther. Phil. Tranf. N° 429. p. 109.
SIR Fames Lowetber having occafion to fink a pit very near Sthe full fea mark, for draining one of his principal colliries near Whitebaven in Cumberland, which would be near 80 fathom in depth to the beft feam of coals, which is 3 yards thick; the work was carried on day and night very fuccelsfully thro: feveral beds of hard fone, coal, and other minerals, till the pit was funk down 42 fathom from the furface, where they came to a bed of black ftone, about 6 inches thick, very full of joints, or opencliffs, which divided the fones into pieces of about 6 inches fquare, the fides of which were all foangled with fulphur, and in colour like gold. Under this black fone lies.a bed of coal 2 toot thick: "When the workmen fift prick'd the black ftone bed, which was on the rife fide of the pit, it afforded very little water, contrary to what was expected; but inftead of that a valt quantity of damp corrupted air, which bubbled thro a quantity of water, then fpread over that part of the pit, and made a great hiffing noife; at which the workmen being fomewhat furpris'd, held a candle towards it, and it immediately took fire upon the furface of the water, and burn'd very fiercely ; the flame being about half a yard in diameter, and near a yards high, which frightned the workmen; fo that they took the rope and went up the pit, having firf extinguith'd the flame, by beating it out with their hats: The Iteward of the works being informed of this went down the pit with one of the workmen, and holding a candle to the fame place, it immediately took fire again ds before, and burnt about the fame bignels; the flame being blie at the bottom, and more white towards the top. They foffered jt to burn near hadf an hour; and no water being drawn th that time, it rofe andicover'd the bottom of the pit near a yard deep, but that did very little abate the violence'or bulk of the flame, it ftill continuing to burn upon the furface of the water: They then extinguift'd the flame as before, and opened the hlack ftone bed near 2 foo broad, that a greater quantity of air might iflue
forth, ter, and ab,unt 3 yards high, which foon heated the pit to fuch a degree, that the men were in danger of being flifled; and fo

$$
G \operatorname{gg} 2
$$

were as expeditious as poffible in extinguifhing the flame, which was then too ftrong to be beaten out with their hats'; but with the affiftance of a fpout of water, of 4 inches diameter, let down from a ciftern above, they happily got it extinguifh"d without further harm. After this no candles were fuffer'd to come near it, till the pit was funk down quite thro' the bed of black ftone, and the 2 foot coal underneath it; and all that part of the pit, for 4 or 5 foot high, was framed quite round, and very clofe jointed; fo as to repel the damp air, which, neverthelefs, it was apprehended would break out in fome other adjoining part, unlets it were carried quite off as foon as produced out of the cliffs of the ftone; for which end a fmall hollow was left behind the framing, in order to collect all the damp air into one fide of the pit, where a tube, of about 2 inches fquare, was clofely fixed, one end of it into the hollow behind the framing and the other carried up into the open air, 4 yards above the top of the pit ; and thro this tube the faid damp air has ever fince difcharged itfelf, without being fenfibly diminifh'd in its ftrength, or leffened in its quantity, fince it: was firft open'd, which was 2 years and 9 , months. It is juft the fame in fummer as in winter, and will fill a large bladder in a few feconds, by placing a funnel at the top of the tube, with the frall end of it put inten the neck of the bladder, and kept clofe with ơne's hand. The faid air, being put into a bladder, and tied clofe, may be carried away and kept fome days, and being afterwards prefs'd gently thro' a fmall pipe into the flame of a candle, will take fire, and burn at the end of the pipe, as long as the bladder is gently prefs'd to feed the flame, and when taken from the candle, after it is fo lighted, it willi continue burning, till there is no more air lefr in the bladder to fupply the flame. This fucceeded in May 1733 before the Royal Society, after the air had been confined in the bladder for near a month. The air, when it comes out at the top of the abe, is as cold as frofty air.

It is to be obferved that this fort of vapour, or damp air, will not take fire except by flame; fparks do not affect it, and for that reaton it is frequent to ufe fint and fteel in places affected with this fort of damp, which will give a glimenering fight, that is a great help to the workmen in difficult cales. Affer the damp air was carried up in a tube, in the manner above defribed, the pit was no more annoy'd with it, but was fink down very fucceisfully thro' the feveral beds of ftone and coal, without any other accident, or interruption, till it came
po the main feam of coals, which is 3 yards thick, and $79 \mathrm{fa}-$ thom deep from the furface; and the faid pit being oval, viz. Io foot one way, and 8 the other, it ferves boch for draining the water by a fire-engine, and allo for raifing he coals.
A folar Eclipfe obferved in Fleetfreet, London, on May 2. 1733, in the afternoon; by Mr. George Graham. Phil. Tranf, $\mathbb{N}^{\circ} 429$. p. 113.

THE oblervation was made with a to foot telefcope, fitted with a micrometer.

App. Time.

H.

$544 \quad 45$ The ecliple began.
$\begin{array}{lll}6 & 25 \quad 30 & \text { The cufps were vertical. }\end{array}$
63730 The ecliple was greateft, the lucid part of the fun's diameter meafuring 426 parts, whereof the fun's diameter meafur'd 23 II: So that the eclipfe was 9 dig. $\frac{4}{7}$.
646 © The cufps were horizontal.
728 23 The eclipfe ended.
Ibe fame Eclipfe objerved at Norton-court; by Mr. Gray; At Otterden place, both in Kent; by Mr. Wheeler; and at Yeovil in Somerfethire; by Mr. Milner. Phil. Tranfo $\mathrm{N}^{\circ} 429$ P. 114 .
$21 \mathcal{A X}_{2}, 1733, \mathrm{Mr}$. Gray obferved the eclipfe of the fun at Norton Court near Ferdergam in Kent, as follows.

The oblervations were made with a heliofcope, or inftrument confifting of a telefcope and box with a digit fcheme at the end of it : The telefcope was 6 feet, the box 2 feet in length, and the fun's image on the fcheme was 6 inches and 8 tenths irn diameter. The clock was rectified on the day of the eclipfe, and verified, fo as to need no correction for feveral days after wards, by obfervations of the fun on the meridian. The fun'ss tranfit was taken by the paffage of its rays thro' a hole made im a brafs plate, the centre of which hole was at 6 feet and 3 inches perpendicular height above the horizontal plane on which the meridian line was drawn.
At Otterden-place, near Lenbam in Kent, Mr. Wheeler ob ferved the beginning at $5^{\mathrm{h}} \cdot 49^{\prime}$, and the end at $9^{\mathrm{h}} \cdot 31^{\prime} 49^{\prime \prime}$: His obfervations were made wirh a telefcope 15 foot in length, and the time was alfo rectified by a meridian line; but it was: done by a tranfit of the rays thro a hole at a much greater height. For, the brafs plate in which the hole was made was fixed to a window in the roof of his hall, at the height of 27 ? feet above the meridian line on the floots:

At Yeovil (being in Lat. $5 \mathrm{I}^{\circ}$) Mr. Miner observed the fame folar eclipfe May 2 , with a quadrant of 2 foot radius. The beginning at $5^{\text {h }} 34^{\prime}$ old $19^{\circ} 45^{\prime \prime}$ The middle at 6 The end at $\quad \begin{array}{llll}7 & 14 & 30 & 2 \\ 45\end{array}$
Some Eclipfes of Jupiter's Satellites observed at Bononia; by M. Manfred. Phil. Trans N ${ }^{\circ}$ 429. p. 117. Tranflated from the Latin.
True time.
H.

April 2, 1732.
10563 An emersion of Jupiter's fecond fatellite, (the fay being ferene) with a 22 foot telefcope.
1323 An emerfion of the $4^{\text {th }}$ fatellite out of \mathcal{F}^{\prime} jupiter's Shadow, with a 22 foot telefcope, the fly ferene.

April 3.

73140 An emerfion of the innermoff fatellite with a 22 foot telefcope, the fly ferne.

April 9.

:3 32.4 An emerfion of the fecond fatellite with a 22 foot telefcope, the fly ferne; fomewhat duboons.

May 3.

$244 \quad 4 \mathrm{I}$ An emersion of the innermof fatelite with a 22 foot telefcope, the fly ferene.

May 4.

Io 3532 An emerfion of the fecond fatellite, with a 14 font telefcope, the air foggy, and the wind blowing.
$10 \quad 3541$ With in foot telescope.

$$
\text { May } 26 .
$$

9 $58 \quad 4$ An exertion of the innermoft fatllite with a 22 foot telescope, the fly ferine.

MEMOIRS of the

True time.
H. ,"
$\begin{array}{llll}9 & 58 & 2 I & \text { With II foot telefcope. }\end{array}$

Fune 2.

94349 An emerfion of the third fatellite with a 22 foot telefcope, the air foggy.

Fune 9, 1732.
11. 924 An immerfion of Jupiter's third fatellite with a 22 foot telefcope, the flsy ferene.

Fune 18.
10825 An emerfion of Fupiter's innermoft fatellite with a 22 fook telefcope, the fiky ferene.

$$
\mathcal{F} u l y=2 \%
$$

y $3^{6} 5$ An emerfion of the innermoft fatellite with Is foot telefcope; flky ferene; dubious.

$$
\text { Fan: i7, } 1733^{\circ}
$$

14 45 An immerfion of the third fatellite into fupiter's; fhadow with a 22 foot telefcope, the fky ferene.
14. 8 33 With a 14 foot telefcope.
$16 \quad 13 \quad 29$. An emerfion of the third fatellite with a 22 foot telefcope; the fky ferene.

March 12.

$1323 \quad 34$ An immerfion of the innermoft fatellite into $7 / 4$ piter's fhadow with a 22 foot telefcope, the: fky ferene.
$13 \quad 23 \quad 22$ With a II foot teleforpe. quake, and an explofon in the Air, in Maryland ; by M_{r}. Richard Lewis. Phil. Tranf N№ 429. p. IIg.

^BOUT the latter end of Fune, $1732, \mathrm{Mr}$. Levois procur'd fome leaves of the flytree (fin called from the valt Twarms of fies obferved to iffue therefrom) on which were fixed little tough bags, as big as the huik of a filhert, of a dufky green colour: Upon cutting them upen, a fly, like a gnat, would come out ; and he could difcover no more, till viewing them with a glafs, he could difcern fomething moving amongt the bluifh pulp; and after fome time he oblerved it contained leveral red grubs, very fnall, and without wings ; he bound ap the nidus, and next morning the grubs had gotten bluifh wings, with their body of a greyith colour; they were very numerous and foon flew away: Both the bark and leaf of the ree refembled a male mulberry. A mongft all the excrefcencies Mr. Lewis had feen on leaves, he oblerved none like thefe. When the leaf is fmail thefe bags are fcarce difcernibie; they grow with the leaf, which is peither difolour'd nor crumpled by them. Redi, in his curious treatife of the generation of infects, gives no account of any fuch nefts.
On Tueflay she 5 th of Sept: I732, about II in the morning, an earthquake was felt in divers places in Maryland: One Mr. Chere had his houfe fhook by it for fome time, and the Dendulum of his clock ftopped: During its continuance, a rumbling noife was heard th the air, and both thofe who did, and thofe, who did not feel the fhaking, complained of a dizzinefs in their heads, and fickneís at their fomachs, it was felt at the Came time in Penfylwanid, and New-Enghand; but whether it extended to north or Couth Carolina, was not faid.
Mr. Lerwis had the follewing account trom Capt. Smith of a furprifing phenomenon that happened in 1725 , fomething of the nature of the abovementiond easthquake, but with fome remarkable difference: $O C T .22,1725$, about 2 in the afteras he then fiought, the reporr of a gun, of a minion fize, abnut 12 miles eattwards from him; this noife was repeated at leaft 20 times, but at unequal intervals, and was fuonafter with the appearance of an extraordinary brightnefs in Noz. IX. 11
zenith, refembling flame, and continuing for about five minutes; after which the le-imaginary guns were fired off 20 or 30 times, difturbing the atmofphere in fuch manner, that the birds loft the ufe of their wings, and fell to the ground in great diforder. This noife was heard about 50 miles off each way from the aforefaid bright appearance. Thus far the Captain. Mr. Lerwis heard the noife (as moft other people did) but did not fee the brightnefs at Patapsko, about 60 miles from the Captain's houif. He was told that the Shock, occafioned by the noife, threw down pewter that was fet to dry againft the fide of aa houfe.

An Account of fome Cbildren inoculated at Haverford weft? in Pembrokethire; by Mr. Evan Davis. Phil. Tranfo $\mathrm{N}^{\circ}{ }_{429}$. p. ${ }^{121}$ I.

THE method of inoculating for the fmall-pox was aboutc ten years befure firft introduced into Haverford-weft inn Pembrokefbire by the ingenious and learned Dr. 'Perrot Williams, who had then his own children inoculated among fomee of the firft on whom the experiment was made; and an account of this was afterwards publifhed in the Pbilofophical. Tranfactions. About the beginning of fring $1 / 32$, this method of inoculation was a fecond time practis'd in the town of Haver. ford-weft and the neighbourhood therenf, by two furgeons of good note and repute, and the only perfons Mr. Davis heard of in thefe parts, who were come into that practice, and who gave him the following account: But in this fecond attempt, the meafles interfering with the inoculated finall-pox, and prolonging the time between the inoculation and eruption, fo much beyond what otherways is ufual, as may be obferv'd in every one of the inftances mentioned, has, he thinks, fromething in it peculiar and uncommon, and therefore worth the taking notice. of.

Some little time before Cbriftmads 1932 the fmall poxi chiefly of the confluent kind, appear'd in Haverford reef Some had them with purple foots, and other violent fymp. toms, of which feveral died. Towards the fpring the mealles became more epidemical, and likewife more fatal than the frall-pox. Some of the fubjects that had been wifited but a little before with the frmall-pox, and who upon their re. covery had their bodies purged, died, notwithfanding of the violent cough that attended and fucceeded the meanes, which afterwards fiezed them. The meafles continued toc
rage, till almoft all the fubjects in the place were vifited with them, the fmall-pox, continuing alfo during the whole time, yet making but flow progrefs, did not leave them till Auguft following.

About the end of Feb. 1732, Mr. Francis Meyler inoculated his own fon, about three' years of age, with the puls from a child of about the fame age, who had the diftinct kind, but the puftules fimall. He made a flight incifion on both legs, but it took only in one: After four days a puftule appear'd on the wounded part, but did not much inflame it, nor make great progrefs. On the feventh day the child grew feverilh; and on the eighth, or towards the ninth day (inftead of the intended fimall-pox) the meafles appear'd' all over his body, attended with a cough; at which time the feverifh diforder abated, till the ith or 12 th day: Then he grew feverih again, and towards the $14^{\text {th }}$ day the fmall pox appear'd, a fmall diftinet fort, and few in number: After the eruption was full, he grew hearty, and continued fo, without a fecond fever. After this Mr. Meyler inoculated two other children with the matter from his own fon, by applying it after a fight incifion, to both the legs of each of them, but it did not fucceed. About the fame time he inoculated two other children, a little way out of town, from a neighbour's child, but neither of them were infected: And whether this was owing to the flightnefs of the incifion, or to the want of a fufficient quantity of the variolous matter, or to a defect of difpofition in the fubjects to be infefted, he could not fay; yet all the four cícaped both the meafles and fmall-pox in the natural way.

About the latter end of March, 1732, Mr. Ricbard Wright inoculated a daughter of Mr. Keymer of Haverfordweff, between three and four years of age, from another child of about the fame age, who had the diftina kind. The matter was applied to one of her arms, the incifion being made pretty deep. The inflammation began about the fourth or fifth day, and afterwards appear'd very confiderable. She proceeded till the feventh day in a very bearty and brisk ftate, at which time the began to grow heavy, fick, and very feverith. Then an eruption of the fmall-pox was expected; but her fever increas'd, and the next day eruptions were obferv'd all over her body, which prov'd to be the regular meafles. She was treated accordingly, and grew well, excepting a pretty fevere cough fhe had, which con-
tinued thro' the whole courfe of the following fmall pox. About the twelfth day the ficken'd again, and about the rith the fimall-pox appear'd, of the diftinct fort, and very favourable; they came out, filled, and dried away very kindly, and were attended with very little of a fecond fever. She went thro' the diftemper with a great deal of chearfullnefs: She was purged afterwards, and feemed very well; but in a little time after, a boil broke out on the lower part of the Shoulder-blade of the fame arm in which the was inoculated, which was brought to fuppurate, and heald in the common manner. From this laft mentioned fubject Mr. Wright inoculated two daughters and a fon of Mr. Roch, about five miles out of town. Thefe three children were from three to eight years of age. The incifion was made in one arm of each child; it produced the fame effect on every one of them, as it had done on Mifs Kymer; viz, the meafles on the feventh or eighth day, and the fmail-pox of the diftinct kind on the I 4 th. They went all three very well thro' every ftage of the diftemper, and the fecundary fever was but night. One of thefe had them fomewhat thick, and the other two had a pretty many of them; but they all thoroughly recover ${ }^{2} d$, and continued in a good ftate of health ever after.
The fafety and fuccefs with which this pratice is attended, feem to Mr. Davis to recommend it as a happy expedient, with which a kind providence has furnifhed us to guard againft the injuries and dangers of one of the moft dreadful and deftuctive difeafes, incident to mankind.

 , 1-

$$
117 \text { k } \mid \text { + Byog - al:..1.e. } 104
$$

$$
\text { I. tiong of } 4.0 .3+1208 \text {, }
$$

\%

Obfervations of the Variations of the Needle and Weather in a Voyage to Hudfon's Bay, in 1731, by Captain Chriftopher Middleton. Phil. Tranf. $\mathrm{N}^{\circ} 429$. p. 127.

$\begin{array}{c\|c} \text { Months } \\ \text { and } \\ \text { Days. } \end{array}$			Lat.p. Davis or Acc	$\left\lvert\, \begin{aligned} & \text { Lat.p. } \\ & \text { Elton. } \end{aligned}\right.$	Obf.	-
1731 9						
June i4 12	30	26	59.17			$5^{\text {d }} \cdot 5^{2}$
159	32	$25 \frac{1}{2}$				
12	31	25 者		59.24	Obf.	$8^{4} .58$
16	32	$24 \frac{3}{4}$				
16.9	32	$24 \frac{3}{4}$				
12	32	24.3	59.33			II. 50
- 9	32	$24 \frac{1}{2}$				
17.9	31	24				15.10
12 9	$3{ }^{1}$	$24 \frac{1}{2}$	59.35			15.10
18.9	$31 \frac{1}{2}$	24				
18.9	31 30	24				18.45
12 9	29	24 23	59.29			
99 99	3 I	25				
I2	3^{1}	25	58.54	58.52	Obf.	21.15
-9	30	24				
$20\left\|\begin{array}{l} 9 \\ 12 \end{array}\right\|$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	24				
$\left\|\begin{array}{c} 12 \\ 9 \end{array}\right\|$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	24 $24 . \frac{1}{4} \frac{1}{2}$	58.47	58.55		24.II
259	27	$24 . \frac{1}{2}$				
12	26	24	58.47			29.13
9	25	2.4				
22.9	25	24				
12	24	$23{ }^{\frac{1}{2}}$	58.42	58.47	Obr.	32.54
-9	24	$23{ }^{\frac{1}{2}}$				3.54
23.9	$26 . \frac{1}{2}$	25				
$\left\|\begin{array}{r} 12 \\ 0 \end{array}\right\|$	$\begin{aligned} & 28 \\ & 30 \end{aligned}$		58.38			36.55
$24 \left\lvert\, \begin{aligned} & 9 \\ & 9 \end{aligned}\right.$	130					
$24\left\|\begin{array}{r} 9 \\ 12 \end{array}\right\|$	$\begin{array}{l\|l} 30 \\ 29 \end{array}$	$\begin{aligned} & 26 \frac{3}{7} \\ & 25 \frac{4}{2} \end{aligned}$	58.37		Obr.	40.56
	28					
2519	- 28	$2.5 \frac{3}{4}$				

Months

432 M E M OIR S of the

Royal Society.

Royal Society.

Royal Society.

Royal Society.
448

Fair.
Fair and moderate.
Mer. the lame, cloudy.

- the fame fair.

Fair and cloudy.

- rifing, hazy, with fnow? — rifen, foggy.

$\left\|\begin{array}{r} 9 \\ 12 \\ 9 \\ 9 \\ 12 \end{array}\right\|$	

- ftands, clovidy.

The fame, cloudy.

- Itands variable.
- the fame, cloudy.
- fomewhat fallen, cloudy. Calm.
-rifing quick, frefh gales.
- litde rifing, cloudy.
- ftands, fqually with rain.

Clear, with frefl gales.

- ftill falling, fair.
———fands, fair, fqually.
- rifing, fqually with hail.

Hard fqualls.
-at a ftand. hard fqualls, Squally with frefh gales. K k $⺊$

Sept.

444

MEMOIRS of the

As to Mr. Patrick's marine-barometer, which Captain Middleton made ufe of for two voyages to Hudfon's bay in North America, by the fricteft observations, he always found it to give him timely notice of all bad weather, and likewife of veerable winds; as alpo certain intelligence of their coming nigh any ice, with the quantity they had to go tho. It is an inftrument of excellent use, he having continually found himfelf obliged to conform to its more certain information preferable to all other ocular appearances in the horizon. He likewife obferves, that when they came in, or near ice, they were obliged to keep one of their compaffes continually moving, there being either fome magnetic particles in the air, or forme other quality that hinders them from traverfing; which makes the courfe very difficult to traverfe: This happens generally in centring Hudfon's freights and bay, but never fo without being near or amongst ice, He enquired of the Commanders, and others that ute Greenland and Davis's freights, and finds great complaints from them of their companies not traverfing. Captain Middleton tried the needle of the amimath compass without the chart, and finds it to traverfe much better; fo that he defigned to have iceing glass charts, as being lighter.
An ObServation of a total Eclipse of the Sun, with a Mora, at Gottenburg in Swedland, in Lat. $57^{\circ} 40^{\prime} 54^{1 / 3}$ May 2 1933, O. S. by M. Berger Vaffenius. Phil. Tranif. No 429 , p. 134. Tranflated from the Latin.

THE beginning of the eclipfe, which could not be obfervid by reaton of clouds, feems to have happened before $\sigma^{\mathrm{h}} 2 \sigma^{\prime}$ in the afternoon.

The fun was eclipsed three digits nearly.
About fix digits.
Jupiter appeared.
The entire diff of the fun begins to be covered.
A very great darknefs, when all the firs of \#̈rfa Major, Cor Leones, Sirius, Procyon, the Bull's eye, and forme others might be fees; yet neither Mercury nor Mar's appear'd.
> y 16 $20 \quad 12$ Jupiter fill appear'd.
> 7. 4.13 Six digits of the fun covered.

The end of the eclipfe, the entire disk of the fun fining.
The mora of the total eclipfe at Gottenburg was $2^{\prime} 81$.
The mora of the fame eclipfe in a place called Sivenaker, Seven Swedish miles from Gottenburg to the north, in Lat. $58^{\circ} 15^{\prime}$, (as M. Torfanus Vaffenius obferv'd by means of a pendulum) was $2^{\prime} 3^{\text {II }}$.
At the time of the total eclipfe M. Berger Vaffenius, with a telefcope about 21 Sweedj/b feet in length, did, betides the greateft part of the macule on the fun's disk, observe the moon's atmofphere; which at the time of the greateft immerfion was a little brighter at the weftern limb; yet without that irregularity and inequality of luminous rays, that appear'd to the naked eye. What was very remarkable was three or four reddish macule obferv'd without the periphery of the moon's disk; one of which was bigger than the reft, in the middle between louth and weft nearly as far as could be conjectured: It was compos'd of three parts, as it were, or lefter parallel nubecule of unequal lengths, with forme little obliquity to the anon's periphery.

This, font, or rather cloud, retain'd invariable its pristine fituation in the atmofphere near the moon's periphery for upwards of $40^{\prime \prime}$. But at length a ray of the fun, like lightming, emitted on the moon's northern limb, deprived him of this agreeable fight.
An Account of an Experiment relating to the Force of Moving Bodies, contrived by M. S'Gravefande, and fieewn to the Royal Society by $\mathcal{D r}$. Defaguliers. Phil. Tranf. No 429. p. 143.

DR. Defaguliers having fhewn feveral perfons in Holland the experiment contrived by Mr. George Graham, to explain the doctrine of the momentum of bodies (viz, that the momentum or quantity of motion in bodies is always as the mats multiplied into the velocity) which experiment is made with a fiat pendulous body, that receives the addition of a weight equal to itself at the lower part of its vibration, and by the reception of that equal quantity of matter always Bores half its velocity; Dr. Muschembrook communicated the following experiment made by M. SG Gravefande in oppofition thereto:

446

MEMOIRS of the

thereto; viz. a fpring, equally bent every time, pufhes forward unequal quantities of matter fucceffively, and in every experiment the product of the mats of the body by the fquare of the velocity is the fame; and therefure, as the: quantity of motion muft always be the fame from the fame: caufe (viz. the fame tenfion of the fipring) it follows, by every experiment, that it is as the mais multiplied into the fquare of the velocity.

Experiment r. The pendulous cylinder is fhot by the fpring from oto 7 degrees, meafur'd upon a tangent line.

Exp. 2. The cylinder, with a leaden weight therein, that makes its weight double, is fhot forward to four degrees 9 tenths.
Exp. 3. The cylinder, with a weight therein, that made its weight iriple, was fhot forward to four degrees and a little farther.

Exp. 4. The cylinder, with a triple weight of lead, fo as to quadruple the whole weight, was fhot forwards to three degrees and a half.

Thefe four experiments feem at firf" agreeable to the new hypothefis: For, according to the old, the cylinder in the fecond experiment ought to have gone but to three degrees and a half; in the third but to three and one feventh; and in the laft but to two degrees. But if we take in the confideration of time, all will be reduced to the old principle. As for inflance, let us compare the firft and laft experimenes. In the firft, the foring, during a certain time, ats upon the cylinder, which is driven forward with the velocity 8. When the quadrupled weight is driven forward with the velocity 4 inftead of 2 , it is becaufe the fame fpring acts twice as long upon the cylinder before it ceales to impel it; and certainly the fame caure acting twice as long muft produce a double effect.

Experiments on Mercury; by Dr. Bocrhaave. Phil. Tranf. $\mathrm{N}^{\circ} 430$. p. 145 . Tramfated from the Latin.

SUCH as have carefully applied themfelves to the invef. tigating by experiments the origin of corporeal things, rheir peculiar virtues and properties, fuch only are poffeffed of the methods by which the true knowledge of them is with certainty obtain'd. But when the candid enumerate the inftruments of this knowledge, they unanimoully own, that chemiftry affurds the moft ufeful, for vigoroufly promoting
the defign: And when they carefully perufe the authors celebrated in the art, it plainly appears that the moft ancient alchemifts excel all others when they treat of the nature of things; of this Geber, and fuch as immediately followed him, are pregnant inftances: For, they fimply defcribe the things they difcover by their art, to the fole improving of which they wholly devoted themfelves: And indeed no fet of men have made their refearches into nature, with fuch penetration, obftinacy and indefatigable labour, as the alchemifts : And what oblcurity foever they may affect in treating of the Arcanum of the Wifemen, in their common inventions they are open and plain.

Upon perufing the writings of chemifts and alchemifts, Dr: Boerbaave found that they all agreed in this; namely, that metals are naturally produced and nourifhed; that they grow and multiply in their veins in the fame manner, as other natural bodies do in their proper places; and likewife that the aliment of metals, which before was of a different nature, is by the genial virtue of the metallic feed converted into a true metallic nature; foas by this feminal virtue alone to lofe its priftine nature and acquire this new one by the cherifhing impregnating warmth alone: And this in the manner, as the feeds of animals and vegetables convert whatever they receive into their proper nourithment. Thus, the vivifying feed of vegetating gold, meeting with a fir pabulure in a proper matrix does by means of a fuitable degree of heat digeft it into its own peculiar nature. In this manner, therefore, they hold, that, by a law imprinted on fubterraneous bodies, true gold is always produced by length of time from a matter of a different nature fromitfelf. The more accurate enquirers have found, that growing metals, efpecially gold, are clofely pent up in hard and pure rock, which is fo iollicitoufly fealed down, as not to admit of any vifible communication. The matrix or ore of the growing metal being denfe, hard, impenetrable, and clofe, refembles glafs. Scarce any thing more unaccountable than the manner, in which folid metallic particles penetrate a ponderous mafs of hard fiint, and reach into veins impreguared and charged with metal: Nor is it lefs difificult to account which way the faid metallic parts fhould fecretly pafs into them, if, as is very probable, they are originally in a liquid fate. The genuine matrix of metal thus known, the heat alfo of mines is known; which rarely equals that of a found perfon, but is fre-

448 M E M OIR S of the

frequently below the 6oth degree in Fobrenbeit's thermometer. Hence the adepts order to include the pregnant matter of the arcanum in pure glafs, and cherinh it with a degree of heat equal to that of Nay, whice by M. Cruquius's accurate obfervations is 50 degrees, and is the mean degree of heat throughout the year. Both the pabulum of metals, as alfo that feminal, prolific, and generative matter, ftill remain a myltery.

The generality affirm that quickfilver is the common matter of all metals; which changed by the power of the vital feed, yields a determinate metal according to the peculiar property of the feminal efficacy; all metals, therefore, arrive to their refpective perfect fpecies by the mature concoction of quickfilver, and this metallific virtue, call'd fulphur. Hence each fpecies of metal is again refolvable into thete two. But an original impurity intimately adheres to quickiflver, which is confirmed as it grows up, and hence feparated from it with difficulty; and if freed from that heterogeneous impurity, a very difficult task, it at length becomes liquid, metallic, very ponderous, and fimple, and neither divifible by art or nature into different parts; in this the vivified feed of each diffolv'd metal would be perfectly multiplied; and in it gold itfelf diffolv'd, cherifh'd, and brought to maturity, would be the ultimate effect of art, a thing fo much fought for, and fo much cried up.
Upon obferving that the adepts agreed on the fe things, the Dr. for a long time applied himfelf to difcover how mercury might be obtain'd pure. Whether it could be got from merals? and what that other part is, that is apt to fix mercury.
I. Pure quickfilver, only flook in a dry, found glafsveffel, yields a fofr, black, fine powder.

Procefs. Upon fraining thro leather 16 ounces of quickfilver, no impurity remain'd behind: Having ground it for a long time with pure water, the water ftill continued pure; and with fea-fafr, the colour of the falt was noways fouled; the triture was repeated after pouring water to the falt and mercury, nor thus was the colour changed: And the whole procefs yielded neither blacknefs nor foulnels : After wathing and drying the mercusy it became fisining: He poured it into a botile of green German glais, which he put imo a fand heat, fo as almolt to bring over the mercury; and that for three days, till all the water, which often lies conceal'd
in mercury was entirely evaporated: The warm bottle was corked tight down, and fealed with a cement of pitch, rofin, fuet, and fulphur; and the whole wrapped clofe in a linnen cloth and ropes: In this manner he put the bottle into a wooden box, that juft touched its fides; and he filled up the vacuities with dry bran, that the bottle might fland firm; and faftened on the top a wooden cover with a hole in the middle, that the neck of the bottle might ftand out a little above it: And in this manner he caus'd tie it to the ftamper of a fulling mill, that was always in motion when there was any wind: and from the ift of March to the $13^{\text {th }}$ of Nov. 1732, it was Thook up and down, always in a perpendicular pofition.

Upon opening the bottle, he had the fame weight of mercury, cover'd all over with a large quantity of a very foft black and fine powder. He fqueezed it, thro' clean leather, and a pure liquid mercury paffed thro', and the powder remained behind of an acrid, metallic tafte, fomewhat like that of copper.

Corollaries. 1. Quickfilver, which of itfelf is very infipid, by only fhaking it, becomes of a metallic, copperilh tafte. 2. From very mild, it changes acrid and penetrating. 3. From a very bright filver colour it turns very black. 4. From a fluid it becomes confifient under the appearance of a powder. 5. It may, theeefore, lie conceald under that form, and deceive the ignorant.
2. Highly purified quickfilver, trated in the fame manner, yields a like powder in a much larger quantity.

Procefs. From a fufpicion, that fomething heterogenous might adhere to mercury, and by agitation be feparated therefrom under the form of a powder: With a glafs retort in a fand heat he diftill'd all the mercury; and this he repeated 60 times more. In the botton of the veffel were five drachms of a red powder, of which anon. This mercury was exceeding volatile and thining. He caust thake rwo ounces of it at a fulling miil, in the fame manner, and for the fame time, as in procefis i.

Effect. The weight was the fame. The powder obtain'd was foft, black, and of an acrid, metallic tafte, like copper; and two drachms, and 26 grains in quantity, which was more than $\frac{2}{8}$ of the whole; whereas mercury commonly fold in the fhops farce yields $:^{\frac{1}{2}} 8$.

Vot. IX. 12

Cor. r. Mercury diftill'd 6I times, gains from being very infipid, a metallic talte. 2. From very mild, becomes acrid, and penerrating. 3. From a very bright filver colour, changes very black. 4. From being more fluid than the native, becomes a confiftent powder. 5. It retains this property in a conftant ftrong fire, and feveral times repeated. 6. This property therefore, does not depend on any adventitious impurity feparable from it by fire. 7. The red chining acrid matter remaining at the bottom of the retort affer diftillation, is no more like the black matter obtain'd by fhaking, than that part which continued volatile. 8. By fire, mercury changes red, and by fhaking, it turns black; and it is of changeable colours. 9. Whether a fmaller quantity of mercury yield a greater quantity of black powder?
3. If the black powder of procefs 2 be urged with a ftrong fire, it becomes pure mercury.

Procefs. In a glafs retort he urged with a ftrong open fire, two drachms and 26 grains of the black powder of procefs 2 . So that at laft for two hours the retort was glowing hot.

Effect. In the receiver were two drachms and two grains of a very pure, infipid fhining mercury: To the fides of the glafs, which joined to the retort, terminates in a veffel full of water, therefuck here and there a finall quantity of mercury, which he could not entirely collect. In the bottom of the retort was a fmall fixed ftain, exceeding fine, and but juft vifible.

Cor. r. Mercury diftill'd Gr times, agitated, and changed to the abovemencioned powder, does by the action of fire alone refume its priftine form. 2. From acrid, and penetrating, it turns very mild. 3, From a very black colour, it gains the filver brightnefs of a mirror. 4. From a confiftent powder it becomes very fluid. 5 . By thefe three operations it continues the fame in itfelf, but under various forms changes irs fpecies. 6. Its tafte and acrimony are furprifingly alter'd, by thaking only, or by fire only. 7. By thefe operations fomething fixed arifes from mercury. 8. The black powder thus feparated from mercury was neither an impurity nor any thing heterogeneous.

Scbolium. In conical glafs bodies with flat bottoms, and fopped with inverted glafs bolt-heads, he expofed mercury for feveral months to a fire of 180 degrees: It became black, and in all refpeets yielded a fimilar black powder: Whence
he learned that fire and thaking have the fame effect on mercury in this degree.
4. Mercury is changed by fimple diftillation.
${ }^{4}$ Process. In a fand-heat he diftill'd from a glafs retort 18 ounces of mercury Amfferdam weight, bought of the company there, into a receiver fill'd with pure water to the height of 4 inches, till no more running mercury remain'd in the belly of the retort. He dried and depurated the mercury with filtring paper, that it might be quite dry and cleanfed from all impurity, and likewife from the black powder brought over with the mercury in every diftillation; and this he repeated for 52 times: In every diftillation there arofe a red, Shining, powder in the retort.

Effect. After 52 diftillations there were four drachms and a half of an acrid, red, shining, powder, which purges both upwards and downwards; and 16 ounces and five drachms of mercury; therefore, fix drachms and a half were loft; a thing not to be avoided, as fomething always evaporates thro' the luting, and as fome of the black powder, and a little mercury fticks to the filtring paper every time of drying; fo that upon repeating the operation, the quantity may at laft be confiderable: The powder obtain'd was ponderous, of a fhining red colour, exceeding friable, of a very acrid, metallic, naufeous tafte, greatly difordering the human body for a confiderable time, and difpofing to excretions. Mercury treated in this manner appear'd more fluid than the common fort.

Cor. r. Mercury thus urged by fire, from a fluid becomes a powder almoft ${ }^{2} s$ part of its weight. 2. From the brightnefs of a filver'd mirror, it is turn'd to a hining, ruddy, colour. 3. From very infipid to a very acrid, difagreeable, metallic, penetrating tafte. 4. From very mild to a virulent, poifonous, acrid, fubitance, difordering the body, and caufing pain. 5. From volatile to a more fixt fublance, not fublimable with the fame degree of fire as before. 6 . The re-
m . 7. Mechanical changes more fluid, in other refpects alike. cate a black colour to mercury in a clofe veffel; and a greater degree of fire, a red colour.
5. He was defirous to kinow what farther changes mercury might undergo, if urged with the degree of fire requir'd fur diftillation.
'Procefs. He caus'd diftil 15 ounces and five drachms of f the mercury remaining after procefs 4 , and that in the fame manner as before, till nothing remain'd in the bottom of the: veffel. What came over, after depurating and drying it, he: pour'd again into the fame retort, repeating the operation 448 feveral times. And now this mercury was perfectly? diftilled soo times: It always yielded fomething red; and itt came over every time ftll more fluid and pure. At laft he: made the fire more intenfe; but then that ruddy powder: feem'd rather to decreafe than increafe; the mercury being, probably, in part revived.

Effect. The powder at the bottom of the retort weigh'd one ounce, five drachms, and $2 I$ grains. The remaining; quickfilver after 500 diffillations weigh'd nine ounces and five drachms. But in fo many difillations the retorts would fometimes crack; and fo fome mercury efcape, befides, what was loft in purifying and drying it fo many times.

Cor. 1. The corollaries of procefs 2,4 , hold true in this procefs, 2. Mercury, as to one part thereof, is immutable. 3. But as to the other it is continually changing. 4. From its changed form it returns perhaps to its priftine fpecies. 5. And reviving by the new action of fire, it again returns to its changed fecies.
6. That property ofmercury, whereby the fire changes it into a powder, is fcarcely deftroyed by diftillation.

Procefs. He diftill'd in a glafs retort, till the whole came over into the receiver, pure fluid mercury, from which he had obtain'd two ounces, one drachm, and 51 grains, by 501 diftillations (according to procefs $2,4,5$.) which remain'd of 10 ounces five drachms and a half. The bottom of the retort was as clean, as if newly blown; only there was a fhining, ruddy, beautiful, finall, ring round the inner furface of the retort, at which the mercury ftood before diftillation. After depurating and drying the mercury, he pour'd it again into the fame retort, and re-diftill'd it, repeating the operation ten times: At each time there was more of that red powder, and in no lefs quantiry than from crude mercury.

Effect. The mercury was very vivid and mining; the fixed powder, to the quantity of feven grains, was beautifully ruddy, in other refpecis as by procefs $2,4,5$.

Cor. The mutability of mercury into this powder, by the action of fire, ftill remains, aferer $\frac{\frac{x}{y}}{}$ part is reduced. 2. It likewifo

Royal Society.

likewife continues after 5 II diftillations, each of which contributes fomewhat to the producing that powder; tho' there be no addition of new mercury. 3. That powder, therefore, is fcarcely to be reckoned as an inapurity feparable from the nucleus of mercury by diftillation. 4. And hence it appears, that by this means it undergoes a change; but that it is by this means defecated is not fo certain. 5 . Fire is not thus united to mercury, as fome modern chemifts affirm. σ. The limits beyond which this powder is no longer producible can fcarcely be affigned. 7. If that powder arife by the action of fire from the crude fulphur of mercury, diftillation does not difcharge the mercury of it.
7. To examine the powder got by the $2,4,5,6$. proceffes.

Proce/s. He put two ounces, one drachm, and 51 grains of the powder into a clean, glafs-retort, coated with a mixture of loam and fand; he gradually heated the retort with a naked fire for three hours in a fand-furnace, till it was almoft ignited.

Effect. From the powder there came over one cunce and half a drachm of pure, revived, mercury. In the bottom of the retort there remain'd feven drachms and a half of a bright ruddy powder; there fluck a little in the neck of the retort, and in the glafs-veffel luted to its neck; and probably, fomething was diffipated by fo intenfe and conitant a fire.

Cor. Mercury is recover'd from the powder into which it was reduced by fire. 2. When revived, it recovers all its pritine qualities, and lofes all its acquir'd ones. The fame quantity of mercury is got from the powder. 3. Its acquir'd fixity cannot bear a great degree of fire. 4. Yet in this powder one part is more fixed than the other; this latter ftill continues a powder, and the former becomes mercury.
8. To examine further the powder remaining after the preceeding procefs.

Proce $/$ s. In a clean glafs-retort, coated with a mixture of loam and fand, he committed 7 drachms and 39 grains of the powder to a naked fire, gradually heightened, tili at length the retort became quire glowing hot in a fire of fuppreffion's and he kept it thus ignited for four hours.
Effect. There came over into the receiver feven drachms of pure revived mercury; at the bottom of the tetort were 15 grains of a duskilh fubtile powder, fixed in fo great and lafting a degree of fire; the bottom bad alfo a broads fine;

454 M EMOIRS of the

fine, ftain, of an exceeding beautiful red colour, and penetrating into its fubftance.

Cor. 1. Mercury by the action of fire alone is changed into the powder already defcribed procefs 2, 4, 5, 6,7,8. 2. This powder by the fole action of fire is changed, but by a greater degree thereof, into mercury. 3. Thus the ferpent has bit itfelf, and dies. 4. But it is again refufcitated more glorious. 5. After fo much labour, fo intenfe and conftant a degree of fire, out of 17 ounces of mercury there remained only 15 grains fixed in the retort, ignited to fuch a degree, as to be ready to fufe. 6. The filver, gold, and other metals, that by this means are fought for in mercury, are hardly any at all in comparifon of the expence and labour. 7. Of the powder fixed in this manner from mercury, only $\frac{1}{7} 2$ part remains fixed in this degree of fire, and the other parts are converted into mercury. 8. There were 22 grains loft, or whether they were not diffipated ? Or whether that weight, added to mercury by fire, be not again feparated from it by a greater degree thereof. 9. Mercury being of an uniform, fimple nature, cannot be feparated by diftillation into diffimilar parts; nor into fix'd, and volatile; pure and impure ; nor into different elements.
9. He put 13 grains of the laft fix'd powder, procefs 8 . into a crucible, in an open fire before a blaft-heat, till the crucible was entirely ignited; and he kept it at this pitch for $\frac{x}{4}$ of an hour. The powder remain'd fix'd at the bottom of the crucible, but fwell'd like a fponge, and of a dufkifh colour: Hence he learned that the powder had acquired a confiderable fixity by the action of fire only.
10. Then he added a little borax to the fixed powder of procefs 9 . urging it with a blaft heat in a crucible. It became one entire, friable, vitrefcent mafs, and fixed in fo great a degree of fire.
11. Of the 15 grains of powder, that remain'd fo fixed at the bottom of the retort of procefs 8, the Dr. gave 2 grains to a fworn and fkillful affayer at Amferdam, to be tefted with the utmof accuracy with lead, according to the rules of art: But: it was all entirely diffipated; there is, therefore, neither gold nor filver in this powder.
12. He gave a fiworn and flillful affayer at Amfterdam 13 grains of procefs'so. fus'd with borax into a virrefcent mafs, to be tefted with lead: Of the whole mafs there remained nothing fixed: Confequently, there is neither gold nor filver therein.

Cor. 1. Mercury continues in the fire to retain its nature unalterably. 2. It is fimple, nor feparable by diftillation into different parts. 3. It is fixed by fire, and feems changed in its external form. 4. Under this appearance, it acquires in various parts various degrees of fixity. 5. Yet none of thefe parts had acquired, from fo intenfe and conftant a fire, the fixity of gold or filver. 6. The fixing caufe, fire, penetrating glafs, changes a part of mercury in this manner, either by its fimple action, or by uniting therewith. 7. Fire thus acting after 5 ur diftillations, could neither by its action nor union convert the leaft particle of mercury into gold or filver. 8. But a greater degree of fire yields true mercury from that which was fix'd in this manner by fire; or it is diffipated by lead on the cupel. 9. It does not, therefore; appear, by thefe experiments, that any known metal is produced from mercury and fire, thus confpiring: The I grains above did not flux in a blaft heat ; did not ftand the teft of lead, nor amalgamate with mercury. Io. Fire, therefore, by thefe experiments, is not Nhewn to be the fulphur philofophorum that fixes mercury into metals. Ir. But it feems probable, that the fulpbur fopborum proximum is fomething different. I2. The fixed part is not the impurity of mercury, nor its crude fetid fulphur: For, it is again converted into mercury. 13. The depuration of mercury from all earthy impurity and crude moiture feems hardly performable fo eanly by diftillation alone: But probably by fome other more fecret way. 14. By means of fire neither gold nor filver are obrainable from mercury. The ignorant, and fanciful, are credulous and big with hopes. Mercury fill remained mercury. 15. We are on our guard againt the cheats of impoftors, who promife fuch effects from mercury and fire in a thort time, or even a few months; when indeed there is not the lealt fign of it in feveral years.
13. Mercury detain'd under boiling water, does not rife from the bottom of the veffel.
:Prorefs. He pour'd a drachm of pure mercury, twice diftill'd, into a glafs urinal, which he fill'd up with rain-water; Yet fo as that always fome water cosered the mercury. Then weighing the mercury he bad juft a drichm without any waffe. Again he pour'd a drachm of mercury into a clean, dry, glafs veffel, which he fitted within a copper, fo as to fland feady;
he fill he fill'd the copper with water, and made it boil 8 hours: The velfel was cyimdrical, open, 2 inches and $\frac{x}{2}$ deep, and fet in fuch
ush manner as no water could enter into it. After the operation, the mercury weigh'd a drachm without any wafte. He poured water into a glafṣ body with pure mercury, under an alembic; he boiled the water for a confiderable time, and no mercury came over: He continu'd boiling, till all the water being evaporated, the mercury became dry at the bottom of the veffel; and yet without increafing the fire, the mercury immediately afcended to the fides of the body, and into the ftillhead : The reafon of this appears from what the Dr. has faid in his Infitutiones chemice on the articles fire and water.
14. Mercury may be changed by art, fo as to afcend from the bottom of a veffel by the heat of vinegar which is not brought to boil.
$T_{\text {Proce }}$ s. He fhook an amalgama of $\frac{x}{2}$ a pound of lead, and $1 \frac{x}{2}$ of mercury in a glafs veffel ; whence was produced a very black powder, which he put into a glafs body, 14 inches high, pouring thereon twice diftilled wine vinegar; he evapo. rated the phlegm by a gentle diftillation; then he heighten'd the fire a little, but without making the liquor boil: The mercury came over along with the phlegm into the ftill head, and from thence into the receiver. He experienced the fame thing by other methods; and this phenomenon deferves to be farther confider'd by chemifts. By a method pretty near a-kin to this the Dr. obferved that mercury became fo volatile, as in his digefting furnace to be rais'd up the fides of the veffel by a lefs degree of heat than that of a healthy perfon; and then it was far from being pure, being mix'd with metal, and very dry.
15. Geber writes that pure mercury is heavier than gold. Dr. Boerwaave long ago endeavour'd to difcover whether mercury could be rendred denfer, and confequently heavier than it naturally is: He began by attempting to feparate the more light and variable, from the remaining more ponderous part, but he could not effect it. He afterwards endeavour'd to purify it feveral ways; but all in vain: Yet he dificnverd fome things that are worth taking notice of, and which are, as follows. Upon examining hydroftatically a miss of 2 ounces of the pureft gold in rain water, purified by a gentle diftillation; its weight to that of water, was as $19 \frac{119}{500}$ to 1 ; common mercury of the flops diftill'd once in a retort, was to the fame water, as $13 \frac{57}{100}$ to I ; mercury amalga mated with the pureft gold, and difill'd fome hundred simes therefrom, was to water, as
$I_{3} \frac{55}{100}$ to $I ;$ mercury treated in this manner with the pureft filver was to water, as $13 \frac{58}{100}$ to 1 mercury amalgamated with lead, reduced into a powder, and recovered thence by an intenfe fire, was to water as $13 \frac{55}{100}$ to I; mercury diftill'd 511 times, was to water as $14 \frac{I I}{100}$ to I: Thefe fatical experiments were very carefully made and with exa a inftruments.
Cor. I. If purified mercury become lighter; it is then highly purified by gold and lead. By Suchtenius's and Pbilalethes's art it remains the fame. 2. If purified mercury become heavier; it is then highly purified by means of filver, with refpect to other metals, but moft of all by fimple diftillation, by converting it inoo the red precipitate per $\int e$, and by the refufcitation of it from thence. 3. Mercury may become denfer by means of filver and fire. 4. It may become denfer by diftilling it much by fire. Quer. whether this be the beft way for depurating and perfecting it? 5 . Whether mercury depofites its heavieft part in gold? 6 . And wherher what it thus depofites be the feed of gold? 7. Whether fire, by coction, fixing and refufcitating of mercury 5 II times, add to that heavieft part? And how far that may be effected? Whether mercury, by continuting the operation, may at length be condens'd into the weight of gold? And whether then it would be the aurum vivum, or mercurius philofopborum? All which Dr. Boerbaave leaves to competent judges to examine.
A Spirit level to be fxed to a Quadrant for taking a Meridional Altitude at Sea, when the Horizon is noi vijble; by Mir. John Hadley. Phil. Tranf. No 430. p. 16% latitude of a ship at fea, has always been fo great an inconvenience, that any method for determining it without a horizon, muft be of confiderable ufe, tho' it fhould be liable to an error of a few minutes.

This level (Fig. 9. Plate XI.) conififs of a glafs tube A B, bent into an arch of a circle, and containing fuch number of degrees, as will be moft fuitable to the degree of exactnefs with which the obfervation can be made: Its bore muft not exceed

Vol. IX. x_{2}
one tenth of an inch in diameter, that the liquor in it may the better keep together, and its 2 ends ftand perpendicular to the tube in all pofitions: Nor fhould it be much lefs, Jeft the hanging of the fipirit to the fides fhould hinder it from fettling fo truly by its weight to the loweft part of the tube. This tube is cemented into another brafs one CDEF of the fame curvature; the outer half of which is taken off, fo as to thew the glafs, leaving only a fmall part in the middle D F entire, in which a fmall ftop-cock G is placed. The glafs-tube is divided in 2 in the middle to make room for this ftop-cock; the kcy of which muft have a hole of only about one hundredth part of an inch, for the paffige of the liquor. The outer ends of the glafs tube muft have a communication with each other round about by means of 2 fmall pipes I and K, and the tube H; the manner of which is fufficiently fhewn by the figure. Each half of the glafs tube A B muft have a fcale of degrees anfwering to the curvature of the tube, fubdivided at pleafure: They may be numbered either on the upper or under fcale in the figure; and obferve that in the under fcale 2 degrees are number'd as one; the reafon of which is, that the motion of the fpirit in the tube increafing the number on one hand, and at the fame time as much diminifhing that on the other, their difference is alter'd thereby; fo as to anfwer to double that motion. The divifions of the fcales are cut on the edge of the brafs half rube, or trough, which is made thick for the greater ftrength. In one of the fmall pipes I or K, juft againft the return of it, which enters the end of the firft mentioned glafs tube at A or B, is a fmall hole, by which to introduce into it fo much fpirit of wine, as may fill it from the middle of the fcale on one hand to the middle of that on the other : This hole may be afterwards ftopped by a ferew-pin. The inner ends of the 2 halves of the glats-tube A B hould be fixed into the entire part of the brafs-tube D F with a cement made with old hard bees wax, or fome other materials not diffolvable by fpirit of wine; as fhould likewife the ends of the fmall pipes I and K into this and the tube H: Thofe halves, a a to the remaining part of their lengths, may be faftened down with any ftrong cement.

This level may be fet on to one of the limbs of the quadrant, fitted up for this purpofe, in the manner expreffed in the Fig. It hath an index moveable on the centre, and a fpring at the other end to keep it feady, when it is directed to any of the divifions on the arch, which needs no other divifion than that into whole degrees. The index may be furnifhed either
with plain fights, or may carry a fhort telefcope, with a vane in its focus, to receive the image of the fun, when it is bright enough : But if the fun be hazy, or the moon, or a ftar, be obferved, a niding fhutter may be drawn out to tranfinit the rays of light to the eye glafs. The vane has likewife a thread fixed on it, perpendicular to the plane of the quadrant. The whole inftrument (for the eafier managing it) may be fupported by a ftaff, refting with one end on the floor.

The manner of ufing it is thus: Holding the quadrant in a vertical pofition, with the limb, to which the level is fixed, pasallel to the horizon, raife the index to fome divifion of the arch; as near as you can to the true height of the object, which is fuppos'd to be near the meridian; and confequently to alter its altitude but flowly: Then turning the key of the ftop cock, fo as to let the fipirit of wine pafs thro' the fimall hole therein, keep the image of the object as clofe to the thread on the vane as poffible, endeavouring that the unavoidable vibrations of it above and below the thread, may be equal, both in refpect of their length, and the fiviftnefs of their motions, EGc. Continue this till the fipirit feems quite fettled to fome part of the fcale, and fomething longer. This it will do nowly, but without any fenfible vibrations: For, the flop-cock ailowing it no paffage but thro' the fmall hole in its key, will give fuch a check to its motions, as not only to fop thofe vibrations, but alfo to hinder its being thrown backwards and forwards in the tube by any Shocks of the inftrument; and yet as far as Mr. Hadley has obferved will not prevent its fetting (with fufficient truth, tho' flowly) to the loweff part of the tube. About half a minute of time or more may be neceffary for this, according as the aforefaid fmall hole is greateri or lefs in proportion to the bore of the tube. When you judge the firit quite fettled, turn the ftopcock again. It is of no importance that the image of the obje \mathcal{Z} be exactly on the thread at the infant that this is done. Obferve againft what degree, and part of a degree, each end of the fpirit in the tabe Itands. If your feale be number'd like the upper one in the Fig. and the quantity of fpirit be exact, both ends will agree, and the degrees and parts marked muft be added to, or fubftracted from the altitude, thewa by the index, according to the directions, If the ends do not exaatly agree, take the mean between them: If you ufe the under
fcal fubfrast the the the leffer number from the greater, and add or slevation of the index, during the latter part of the obfervaMinm_{2}

MEMOIRS of the

tion, and will differ from the true altitude of the object about half fo much, as the vibrations of its image above and below the aforemention'd thread on the vane fail of compenfating one another during that time. If either end of the firit leäve the fcale, the index muft be remov'd 3 or 4 degrees, and the obfervation repeated. Inftead of the curve tubes A and $B, 2$ ftreight ones might be ufed, fet together in fuch manner as to form a very obtufe angle in the middle, but then it will be converient to have the quantity of fpirit more exactly fitted to the feale, becaufe the allowing for the difference will be fomething more troublefome. If the obferver have an affiftant to attend to the level, while he himfelf obferves the object, the whole apparatus of the brafs tube, and ftop cock may be omited, fubftituring in its room a plug only with a fmall hole in it, which may be wrapped round with a very thin lice of cork, and to thruft down into the middle of the glafs-tube. The cutting the glafs tube in half in the middle may likewife be avoided; if inftead of the ftop-cock at G, there be one fixed in one or both the pipes 1 and K, to open and fop the paffage of the air, with a larger hole in their keys, and like.. wife a plug with a fmall hole, thruft down into the middle off the tube, as before. The bore of the finall pipes I and K , and the tube H , mult not be fo narrow as to make it difficult to reduce the fpirit into its place, if by any accident either end off It Thould get into them. Mr. Hadley was informed, that an object may be eafly kept in view, even in pretty rough wea-ther, thro a telefcope, that magnifies about 10 times. Now ass fuch telefcopes feldom comprehicnic an area of much more tham one degree in diameter, or at moft I deg. 20 min . it follows that the axis of the telefcope is always kept within 40 min. att moft of the object, and that is the greateft vibration of the image above and below the thread on the vane, If this bee allow'd, it feems reafonable to expect that the medium of thet vibrations one way thould not exceed the medium of thofe the other way, more than by about $\frac{x}{5}$ or $\frac{x}{6}$ part of the greateft vibration; i.e. about 7 or 8 min . the half of which will be the error of the nofervation. In fill weather it will probably be much lefs, if the inftrument be in the hands of a perfori moderately kill'd in oberving.

T'be Diflection of a Fenale Beaver, and an Account of Caftor found in Her; by Dr . Mortimer. Phil. Tranf. $\mathrm{N}^{\circ} 430$. p. 172. N the AEta Erud. for Auguft 1684, p. 360 and Seq. Dr. Mortimer finds an account of the diffection of a male and female beaver by E. G. H. who miftakes in opening the male, the receptacles of the caftor for the uterus, and the 2 glands below them for dugs; and as he found a penis and teffes in the fame animal, he was apt to conclude it an hermaphrodite: But on diffecting the female, he found an uterus, with 2 horns like that of bitches, befides the receptacles of the cafior, which the Dr. fhould have thought fufficient to fet the Autbor to rights, as to the former beaver being an hermaphrodite.

Fobannes Francus, a German phyfician, hath publin'd a treatife entituled Caftorologia explicons cafforis animalis naturam EJ ufum medico chenicum, Auguf. Vindel. 1685: oEtavo, being a commentary on a treatife formerly wrote by one Gohano Marius, a phyfician at Ulm; who in JeEf. 7. defcribes the receptacles of the caffor, as bags near as big as a goofe-egg; and that they have been wrongly called the tefles, being in females as well as males; only that they have no communication with the pudenda. His commentator Francus recites the opinions of tome modern writers, who are ftill in the old error as ancient as Zilian, who fays, that the beaver eats out his own tefticles, when purfu'd by the hunters, as if he were confcious thofe were the parts his perfecutors want, and feek his life for. He cites Adam Zwikeyus, as having this notion; as alfo 70 h. Harderus and foob. Schaptlerus: Nay, fome have thought io abfurdly, as to imagine that the beaver had 4 tefticles. And he fays, that Gulielmus Rondeletius was she firft who diffected a beaver with accuracy fufficient to refute the old error, fhewing that the cafor was not the tefticles, but peculiar bags lying in the groin. the \mathcal{D} feet. 9. fays, that beavers are found in the Ilera and the Biber, from the vaft numbers of beavers formerly found thereabouts; but that now they are all deftroy'd, and nore to be found in the \mathcal{D} anube, except in Aufria; that there are a few in fome rivers in Swifferland, in Poland, in Mufcovy, in the Wolga, in the Wejt-Indies, efpecially in Canada. The greateft quantity of caftor, which is brought to England, comes from Maryland, New Eingland, and Hudfon's Ziay. Marius in fect. 9. Ipeaks of a peculiar virtue in the fur of the beaver; that
that by wearing a cap made of it, and anointing the head once a month with oil of caftor, and taking 2 or 3 ounces of cafor in a year, the memory thereby is greatly ftrengthen'd : And tho' this feems to be only a fuperfitious fancy, yet the Dr. mentions it, as fuch a notion might have probably at firft brought the ufe of its flock into requeft for making of hats.

In the Memoirs of the Royal Academy of Sciences at Paris for 1704, p. 48 and $\int e q$: is an extract of a letter from M. Sarrajin, king's phyfician in Canada, concerning the diffection of a beaver. He fays the largeft are 3 or 4 foot long, and about: I foot or 15 inches broad in the cheft, and haunches; that they commonly weigh about 50 pounds; that they ufually live to the age of 20 years : But Francus on feit. 8. lays, they live 30 or 40 years; and that he heard of a tame une being kept 78, years: The European probably may be generally longer liv'd than the American beavers. Dr. Sarrajin farther fays, that a great way north, thefe animals are very black, tho there: are fome white: Thofe in Canada are commonly brown; but their colour grows lighter, as they are found in more temperate countries: For, they are yellow, and almoft even of a ftrawcolour in the country of the Ilinois and Cbaovanois.

The fomach, according to Dr. Sarrafin, is upwards of a foot in length, and about 4 inches broad in the part next the fpleen; at about $\frac{2}{3}$ of its length, it is contracted to balf its former capacity for an inch in length, and then it widens aga in to 3 inches towards the pylorus, which is rais'd very high, is round, and drawn lowards the fpleen by a membrane, which adheres to the oefopigagus by its other end: Tho this dilatation feem to make a fecond flomach, it only ferves to retain the alimeuts efpecially the more folid a longer time; as the wood, which only undergoes a night extraction, paffing thro with Jittle or no alceration; whereas herbs, fruits and routs are perfectly diffolv'd. The membranes of the ftomach are very thin; fo that this fecond part will fearce bear being diftended with wind. In a beaver full grown, the cocum, which is in form of a fickle, is 18 inches long on the hollow fide, and 30 on the round fide, and 4 inches broad at the larger end, and will coñ\tan berween 5 and 6 pints of water. When he defcribes the receptacles of the calfor, he fays, that the uppermoft bags contain a foft refinous matter, but the lower an oily matter. The greateft bags weigh only 2 ounces. He could never difeover of what ufe this caftor was to the beavers themfelves, being well effured that they do nor fwallow it to excite their appetite. It
is likewife falfe, that the hunters ufe it as a bait for the beavers, tho' they do fo for thofe animals, which infeft the beavers, as martins, foxes, bears, ECc.
As to the ir manner of living, they choofe a low level ground, water'd with a fmall rivulet; that it may be eafily overflow'd by making damms a-crofs it ; thefe damms are made by thrufting down itakes of 5 or 6 foot long, and as thick as one's arm, pretty deep into the ground; and thele they wattle a-crofs with tender pliable boughs, and fill up the fpaces with clay, making a llope on the fide againft which the water preffes, and leaving the other perpendicular. Their houfes are made after the faine manner ; the walls upright, 2 foot thick, and at top in form of a dome; they are ufually oval, 5 or σ foot long on the infide and near as broad, being fufficient to lodge 8 or io beavers; and 2 or 3 ftories high, to which they retire as the water rifes or falls. They fometines build leveral houfes, which communicate with one another: There are he fays fome beavers call'd terriers, which burrow in the earth : They begin their hole at fuch a depth under water as they know it will not freeze at ; this they carry on for, 5 or 6 feet, and but juft large enough for them to creep thro'; then they make a bathing-
pl place of 3 or 4 foot every way ; from whence they continue the burrow, always afcending by fories, that they may lodge dry weeds; and in winter they make chips of wood, which ferve them for matelas's. In fummer they live on herbs, fruirs and roots, but they lay up a provifion of wood againft winter; a flack of 25 or 30 foot fquare, and 8 or ro foot high, is the ufiual quantiiy for 8 or 10 beavers: They eat thofe pieces only which are foaked in the water. The above-cited Marius fays, they only live on fuch vegetable food: But his Commentator Francus tays on feet. 4. that they prey upon filh, cray fifh, and likewile frogs, as others do; and that they make burrows in the banks of the rivers, which open under the water.

In the Memoires pour fervir à l'bifoire naturelle des animaux, compofed by order of Louis XIV. and printed at 'Paris in 167 1. There is p. 64. and leq. an anatomical defcription of a beaver. In p. 69 , the Author fays, that the real tefticles refemble thofe of a dog; that they lie clofe to the os pubis, on
the like that of a dog; bat inftead of lying with its point towards excretory ducts of the caftor, that the fex could not be dif. tinguifhed, till the skin was taken off: In the inteftines were: found eight large worms refembling common earth-worms; $;$ three of which were feven or cight inches long, the reft only; four: In the heart were evident traces of the foramen ovale:: A little below the coronary vein the author mentions a valve, which be fays is call'd valvula mobilis, and clofes the whole cava, but opens fo that the blood may readily flow from the: liver towards the heart, and not from the heart back againi towards the liver. He fays that the brain was but one inch $\frac{2}{3}$ long, and one and a half broad, which was very fmall in proportion to the fize of the animal: and fill more fo in prom partion to the fagacity, with which it is faid to be endow'd. Thefe are the moft renarkable particulars. Dr. Mortimer, met with in perufing the above mentioned books: He now only adds fuch as they have omitted, or fuch as efpecially regard. the fex of this female beaver.
This animal was kept for about three months in Sir Hans Sloane's garden; was but about half grown, not exceeding 22 inchesin length from the nofe to the root of the tail, the tall was eight inches long: She was very thick, and paunchbellied: the thape of the head, and indeed of the whole animal, except the tail and hind feet, very much refembled a great over grown water rat, Her food was bread and water: Some willow boughs were given her, of which the eat but little; but when the was fet loofe in the gatden, the feemed to like the vines much, having gnawd feveral of them as high as the could reach, quite down to the soots: She likewife gnaw'd the jeffamin; but leaft of all fome holly trees. The Dr. was told that in Carolina they particularly love the faffafras, and will cat down trees of about two or three foot diameter. She was put into a fountain with fome live flounders, but fhe never offer'd to ftrike at them, as an otter would have done: When fhe eat, fhe always fat on her hinder legs, and held the bread in her paws like a fquirrel; When the Aept the commonly lay upon her belly, with her tail under her. In fivimining the held her fore feet clofe up under her throat, with the claws clofed, as when one brings the ends of the thumb and all the fingersclofe together, never moving her fore-feet till fhe came to the fide, and endeavoured to come out. She fwam with her hinder feet only,
only, which had five toes, and were webbed like thofe of a goofe; the tail which was fcaly, and in form of the blade of an oar, ferv'd as a rudder, with which the fteer'd, efpecially when fhe fwam under water, which the would do for two or three minutes, and then come up to breathe fometimes, aifing her noitrils only above water: She fwam much fwifter than any water-fowl; moving under water as fwift as a carp: The hinder being much longer than the fore legs, made her walk but flowly, or rather waddle like a duck when on dry lanid; and if drove faft along, the could not run, but go by leaps or jumps, flapping her tail againft the ground. Her excrements were always black and exceeding fetid; her urine turbid and whitifh, and very ftrong fiented... He never heard her make any roife, only a little fort of a grunting, when driven' faft and provoled. She feemed very brisk; and thrived well with the above-mentioned food, being turned into the fountain to bathe three or four times a week; whereas the author of the Nemoires de l'Hiftoire des Animaux, above cited, 「ays, that the male beaver, they had diffected, had liv'd feveral years at Verfailles, without being permitted to go into the water. The beaver here fpoken of had one day convulfion fits, very like the epilepfy in men, from which the recover'd foon, and was very well after them; till at laft She was killed by a dog, and then torn in fuch maniner, that nothing particular could be obferv'd either in the heart or lungs; the liver and kidneys were quite torn to pieces; there wcre feveral holes bit thro' the ftomach, out of one of which crawled a worm about fix or feven inches long, like a common earth-worm, probably of the fame fort as thofe mentioned before by the author of the Memoires. The bowels in general feemed very much to refemble thofe of a dog, except the ceccum, which was of that prodigious fize as mentioned above. The ovaria and uterus were divided into two horns, in the fame fituation as in bitches: The bladder was contracted about the fize of a walnut, and very much corrugated on the outfide; it lay exactly over the body of the uterus'; the meatus urinarius ran upon the vagina above two inches in length: Juft below the os pubis on each fide of the vagina, and above the meatus urinarius (fuppofing the animal to lie on her back) was found a pair of bags in form of pears, about one inch and $\frac{3}{4}$ long, and one inch broad, diverging at their buttoms, or broad ends, but joined almoft clofe together Vox. 1X. 12

MEMOIRS of the

at their necks, or narrow ends, which were canals communicating with the adjoining glands: The membranes forming thefe bags were very tough, full of ruge and furrows, and of a livid dirty colour, they were hollow, and capable of containing about an ounce of water. Upon opening one of them, there was found a fmall quantity of a dark brown liquor like tar, of the confiftence of a thick fyrup, which frmelt exactly like caftor, and had a fort of pungency like fpirit of harthorn, which the dried caftor doth not retain. It is very probable that the youth of this beaver was the reafon thefe bags were not full; and that the caftor itfelf was not of that foft refinous confiftence, as mentioned by Dr. Serrafin loc: citat. Thefe muft be the bags miftaken in the AEF. Erudit. for the uterus. About an inch lower were fituated a pair of glandular bodies, one on each fide the vagina, about an inch and a half in length, and half an inch in breadth; of an oblong irregular fhape, of a pale flefhcolour, like the pancreas, or other glands, and having feveral protuberances externally: Thefe glands feem to communicare with the above defribed bags, the canals coming down from them being inferted into the glands, and both the bag and gland on each fide having but one orifice, which is black, befet with long black hairs, and opening into the lower part of the rima, or great fiffure, into which likewife the vagina and anus open. From the ftructure of thefe glands, and their connection with the bags, the Dr. corcludes, that the caftor is fecreted in thre faid glands; where it is fluid like oil, light colourd, and fcarce baving any fmell; that it runs down into the bags, which féve as receptacles to collect a large quantity together for the ufe of the beaver; and that in thefe recepiacles itlofes jts thinner parts, becomes more infpiffate, of a higher colour, and ftronger fcent, much in the manner as the gall in the gall-bladder, which there becomes fo different from what it was in the liver.
It is certain that ducks, geefe, and all forts of water-fowl, have a gland in their rump, from which they exprefs wirh their bill an oily matter, with which they anoint or drefs their feathers, to prevent their being foaked by the water, in which they fwim; and the glands of that large fort of duck, commorily call'd the Mufcovy-duck, or rather Muskduck, afford an oil, as fragrant as civet: He, therefore, thinks it probable, that as the beaver is an animal, which frequents the water, as much as thofe water-fowl, the caftor is a fub-
ftance

度

 97ith of C Fig. X.

Royal Society.

france provided by nature to grease and anoint his fur with, in order to prevent the water from faking quite to his skin; and as the caftor is impregnated with penetrating pungent particles, it may like wile contribute to keep off the cold and chill, which the water might otherwife ftrike to his body by remaining a long time therein.

Fig. I. Plate XII. reprefents the parts of generation, and receptacles of the cantor in a female beaver: A the two ureters; B B the ovaria; C the uterus lying under the badder; D the bladder contracted and empty of urine; E the urinary paffage, upwards of two inches long; FF the receptacles containing the caftor; G G the two glands, opening by one common orifice, with the receptacles at HH , the orifices of the cantor ducts; I the vagina cut off; K the anus; L part of the rail.
A Natural History of the Air and Earth for the Year I732; by Dr. Cyrillus. Phil. Tranf. $N^{\circ} 430$ p. 180. Tranjated from the Latin.

THERE fell a greater quantity of rain in January and December, meafuring 131 in the former month, and in the latter III; and in OCtober it likewife meafurd 108° But in March and May there was but very little rain: So that comparing together the feafons of the year, there was more rain in winter and autumn ; whereas the fummer and faring, especially the latter, inclined more to fair. This indeed, is common in Italy; and more agreeable to the tomparament of the air, and to the hot and dry feafon of the year: So that it may lem furprifing, that at Paris the greateft quantity of rain should fall in 'July, Auguft and September; And that probably, because, fuck is the firuation of the and foch the nature of the air, that in fumier foch weather is more frequent there, as is joined with plentiful flowers of rain: Whereas in the kingdom of Naples, which is wafh'd by
the Apennine mountains the fourth and weft, and furrounded by the left frequent : For, more plentiful vapours being ra is'd from the fea by the forching heat of a fummer fun; foch as rife from the ocean, and are carried in great quantities cowards the land, may at that time cause more plentiful and frequent rains in the northern, and level parts of France: But in

$$
\mathrm{N} \mathrm{nn} 2
$$

MEMOIRS of the

Naples vapours arifing lefs plentifully from the $\mathcal{T u}$ fan fea will in fummer afford lefs matter for producing rain; efpecially fince the Appenines, and the contrary winds at that time from the Midland parts may eafily oppofe their courfe towards the land : From this mutual ftruggle of the winds both from the fea and land are occafioned thefe hot feafons, call'd tropee, which are rather remarkable for thunder and lightning than any confiderable quantity of rain.

The frow, which about the latter end of 193t lay upon the mountains and even the higher grounds, did in January, $\mathrm{Fe}-$ bruary and March, 1732 almoft contintie thereon, new frow falling daily upon the old. Even Vefuvius itfelf has feveral times been oblerved to be cover'd with fnow: But in the city and fuburbs it never continued on the ground. On the 29, 30, and 31 . days of the preceeding year, namely 173 I , it freezed; the ice was of a moderate thicknefs on the firft day, thicker on the fecond, and became thinner on the third by a thaw coming on in the afternoon, Mr . Haitksbees thermometer falling to 57°, and the air quite calm on the two firf days, and a northweft wind blowing on the third day: But about the clofe of Noversber and on the firlt days of December 1732, at firt a thick ice in the city, which afterwards became thinner, as in the diary. On the 23 d of February hail in the fuburbs; and on March 4. likewife in the city: On the 4. and after the 120 of April in the mountains. But on Sept. 14. there fell very large hail at Foggia with a frong whirl-wind which did no fimall damage both to man and beaft in the open fields.
The winds were of different degrees of trength, and often contrary to each other, for the mofl part wefterly in winter; at one time inclining to the fouth, and at another time to the north; which is a very common thing at Naples, as they have the fea to the weft, but northerly winds were lefs frequent; yet on the r . and 2. of fanuary a very ftrong north eatt wind fiff clear'd the air, and afterwards remitting a little and turning to the north-weft, it fprink led the mountains with fnow.

Here Dr. Cyrillus animadverts on that little machine for meafuring the frength of the winds, defcribed in Pbil. Tranf. \mathbb{N}° 24. as both uncertain and falfe: For, with the leaft breath of wind the vane or flat fide, may be eafly raifed from the perpendicular to 10 or more degrees: But the more it recedes from the perpendicular, the greater difficuly it has in rifing; fo that if in the fift raifing of the vane two degrees of firength in the wind be fufficient to make it run over io degrees of the quadrant, ver other io degrees; and confequently, in order to raife the ane, for inflance, to the 3 oth degree of the quadrant, the trength of the wind increas'd to the fixth and eight degree will not be fufficient: Whence it appears, that we cannot exactly meafure the ftrength of the winds by this machine: For the increafe of the ftrength will not anfwer proportionably to the degrees, marked on the quadrant. To meafure, therefore, the degree of ftrength of the winds, it will be better to make ufe of that method, which Dr. Furin propofes in Pbil. Tranf. $\mathrm{N}^{\circ} 379$, and which Dr. Cyrillus made ufe of in his obfervarions; namely to have recourfe to the motion of the trees, by carefully viewing of which, the ftrength or degrees of the wind may be determin'd by any of the 4 inimbers $\mathrm{I}, 2,3,4$, to be fet down in the form of a meteorological diary; in fuch manner as to call that the gentleft motion of the air, and confequently, the leaft ftrength of wind, by which the leaves of trees may be fearce thaken, and which Dr. Furin would have marked by $\mathrm{N}^{\circ} 1$: Therefore, the greateft force of the wind, that is, its 4 th degree of ftrength; is to be denoted by N° 4, when its impetu's rages mont againft the rame trees, fo as perhaps to pluck thern up by the roots; and confequently, he would have the intermediate degrees of ftrength denoted by $\mathrm{N}^{\circ} 2$ and 3 : In fine, a perfect calm, that is, no fenfible agitation of the air and trees to be denoted by o.

The mercury in Dr. Cyrillus's barometer did once on the 20 . of May defeend to 28.82 London inches; which was the greateft defcent for that year: On that day there was a very ftrong fouth wind ; and tho the firit in the thermometer was far from its greateit degree of rarcfaction; yet the fuffocating heat proved uneafy: On the contrary, the greateft height of the mercury in the barometer, namely, 29.38 was obferved on the 10. of December, an cafterly wind blowing with 2 degrees of ftrength, the air dry and cold, and $V e f u j b i \mu s$ emitting fmoke with an impetus. Befides, the height of the mercury was conflantly obferved greater all that month, than for the reft of the months of the year: But on the $20,21,23$, of November, as alfo on the 16, of December it rofe to 29.50 inches. It is to be noted, that the mean height of Dr. Cyrillus's barometer is 29.4 .

It is not to be omitted, that tho' the affent of the mercury in his baromerer of wally accompany f ir, weather and northerly windes, as on the contrary, its defent, approaching rain and foutherly
foutherly winds; yet the quite contrary has feveral times been obferved ; fuch as its falling in fair weather, and rifing, when the air has been full of vapours: "So that from thence one may probably gather, that the different weight of the external air doth not fo much contribute to the different motion of the mercury in the barometer, as fome alterations and changes in the mercury iffelf.

One of Mr . Hauksbee's thermometers exhibited the following phenomena. The greateft heat this year, viz. 1732, was ubferv'd from the g. of Fuly to the firlt days of Augujt: On the 23 , and 24. of fuly, as alfo on the 1\% the heat was at the height; that is, the cold of 4 deg. being overcome by the liquor afcending to $\mathrm{N}^{\circ} 4$. This afcent was likewife wont to happen the furegoing years: But what was peculiar to the year 1732 and uncommon was, that the greateft heat fhould laft for 22 days, and almoft always at the fame pitch both day and night; the fipirit in the thermometer being about $N^{\circ} 5,6,7$ and 8, except on the is. of Fwly when a fouth and north morthweff winds blowing alternately, with thunder, it rained at times I inch high nearly; at which time the firit in the thermometer defeended on a fudden from 8 to 20 degrees.
The greateft cold was oblerved at the clofe of the preceeding, and at the begining of the following year 1732, the fpirit in the thermometer defcending to 56 and 59 deg . at which time either fnow was obferved in the mountains. or frof in the city. Likewife in Decenbler, when there was ice, the firit in the thermometer was fallen to 55 and 56 deg . And here it is to be noted, that in the fcale to Hauksbee's thermometer', the print of f fof is denoted by 65 degr. Yet Dr. Cyrillas has found by feveral years obferyations, that there was ice produced, when the foirits of the fame thermometer, which were fent him from Fingland, only defcended to 55 degr. vide Phil. Irainf. $\mathrm{N}^{\circ} 424$. Whence it cannot at all be denied, that to produce ice there is required a lefs degree of cold at Naples than at Iondon.
As to Vefuvius, it was quiet for almof the whole year: But at the clofe thereof after the 9 . of December, it began with an impetus to eimit fmoke in the day time, and fometimes flame in the night. But on the 20 . both the fmoke and flame increafed very much: Hence on the following days an internal noile and a report like the explofion of cannon was heard feveral miles off, that both the wooden cafements of the windows and the glafs trembled: Ignited flones were likewife hurled on
high from the vent of the mountain; and thefe afterwards falling down again and refting on the declivity thereof, exhibited po inelegant, tho' dreadful 'fight, burh to Naples, and places more remote : The alhes were fcater'd now at a greater, and now a a lefs diftance, according to the direction and ftrength of the winds. From the 27 and 28 of December a very thick finoke that did not rite high, frinkled the neighboaring places with cuarfe alhes. After the 29 . the fmoke and noife gradually abated: At length after the 4 . of the following famuary all entirely vanifid.
There was alfo an account, that mount AEtna at the fame time belched forth moke aud much fire with a noife; and that Stromboli made an uncommon noife, and burnt with a terrible flame: So that the repeated bellowing, and the alternate eruption of flame, appear'd to thofe that dwelt in the weftern coaft of Calabria like the explofion of guns in a fea engagment.

As this year produced corn, except maiz, in a moderate quantity; fo it yielded fruits of all forts, and wine in greater abund ance and fweeter than the preceeding year.
Of the Camphire of Thyme, by Dr. Neuman. Phil. Tranf. No 431. P. 202. Tranflated from the Latin.

IN Pbil. Tranf. N° 389. Dr. Neuman had communicated to the Royal Society an obfervation, that to him appear'd fingular, an 1 which happened unexpectedly in the diftillation and deparation of the effential oil of thyme; namely, a folid, dry, cryftalline, white and pellucid bndy was obferv'd in this oit, diftilld without any addition: And among other things he advanced, that he could take this fubitance by its outward apphire : Becaufe, in his opin no uther than a fpecies of camany other mixis (in fa far as chemits hov hot be rank'd among dittinguifh'd both natural and antificial matters and acco and to their primory qualisies denominated them) but on the cong trary be moft properly and agreeably to reafon referred to that mixt, call'd cenphire: To this obtervation the Dr. added fuch circumftances and reflections as he thought neceflary; and as to the reft, he left it to the farther enquiry and judgmeat of eyery one, to inform both himfelf and the curions farther about this matter.

Mr. Fobn Brown, chemitt, in PRuin Tranf. N. 390 , entirely difers from the Dr. both as to bis jud gment of the taid production of thyme and the name affigned it; and entertains

472
 MEMOIRS of the

a different opinion almoft in every refpect; particularly, that this dry body, produced from the diftill'd oil of thyme, which the Dr. took for a fpecies of camphire, and confequently. give, it the name of the camphire of thyme, is no camphire, and does by no means deferve that name : The Dr. theretore explains himfelf farther as to what he had formerly deliver'd on this head, little follicitous whether the production be taken for a camphire, or with Mr. Brown for an oil.

Mr. Brosen fays I. That this production of thyme is not camphire, but the coagulated or condenfed oil of thyme. 2. He grounds this upon lome experiments, in which the common Indian, and hop camphire is different from that call'd cam-; phire of thyme; and confequently, that this production is not camphire. And tho' the Dr. has nothing to object to the experiments adduced by Mr. Browen, which point out a diftinction; yet the differences, obferved by Mr. Brown, between the, common camphire and the camphire of thyme, are not fuffcient, he thinks, to convince him, that this production of, thyme is not therefore camphire.
In the above mentioned obfervation the Dr. bad afferted, firft in general, 'that he had got from common thyme, a true, - denfe, cryitalliform, camphire, agreeing with it in all its qua-- lities, and only differing in fmell, EGc. in particular he advanced, ' 1 . In what manner he obtain'd this camphire. 2. His - reafons for taking that fubftance for a camphire. 3. What - parts camphire confifts of. And in fine; 4. That he takes - this camphire of thyme to agree with the common camphire - in all the principal qualities, excepting the fimell.'

Mr, Brown, it is true, owns that this preparation or production exifts, affirming, that fome fuch thing had been obferved before in England, which the Dr, does not contradict ; tho' for the whole 5. years be liv'd there, he never heard of it, much lefs taw it with his own ejes; and fo Mr. Drown grants its external form, and only objects to the name, or that it is camphire: And thus he differs from the Dr. in fome other things.

That this preparation of thyme could be reckon'd no other than camphire: The Dr. was induced to think frum the following reafons: 1. It is got from an effential nil. 2. It is entirely white, tranfparent, pellucid, cryftalline, dry and hard, yet friable; and in fine, a flrong feented body. 3 . In water indifolvable. 4. On the contrary, eafily difolv'd in highly rectified fpirit of wine and firit of nitre. 5. The manifft confliturive. parts of this production of thyme are the fame as of common samphire
camphire ; tho' with refpect to its fpecific fmell, the proportion of its conftituent parts, its native place or climate, there may be a remarkable difference, and from thence likewife variou's fubtile differences may arife about its commixure and relation with other things. And in fine; becaule he could not give a mixed fubftance this conflituted any better or more proper name, from all the natural and artificial fpecies hitherto known, about which chemiftry is converfant, than that of camphire: Since it could not be called either a volatile, or fixed, falt, an earth, ftone, condenfed juice, bitumen, gün, rofin, fulphur, flowers, precipitate, fublimate, pitch, wax, phofphorus, glafs, ice or grit : Much léfs could he call this hard, dry, and cryftalline, body, by the name of any foft unctuous fubftance; ; and leaft of all by the name of any thin fatty or oleofe, or humido-liquid matter, fince it is neither a balfam, liniment, coagulum, butter, oil, fat, fpiris, water, wine, liquor, vinegar, or any fuch thing: And thus he could not think of any one thing fitter and more proper than camphire, with which more juftly to compare it, or more properly exprefs it.

On account of the properties of thefe cryftals already mentioned, the Dr. was induced to call them a camphire; and to diftinguifh this camphire from the common fort and other fécies thereof, to defign it the camphire of thyme: and he at the fame time affirmed, that it agreed in all the aforefaid properties with the Indian camphire of the fhops, tho' he did not then take into the account all its' peculiar qualities, relations effees, diftinctions and minuter fubdivifions; efpecially fince he had not obrain'd fo great a quantity of it, as could enable him to fet about the enquiries requifite for fuch experiments; nor to mention, that, as he afterwards learned from experience, the Eurciean vegetables in general yield but a little of this fort of camphire, and but fuch of them as are naturally difposid to yield any quantity of it .

1. That thefe chryftals of thyme are a camphite, and not an oil, as Mr. Broven would have them, appears from the following very remarkable and evidently different circumitances.
2. Thefe cryftals are dry to the touch, and confequently not foft, unctuous or fatty, but plainly cryftáline, and divided : properties alone fufficient for rejecting the name of an oil.

474

MEMOIRS of the

2. Mr. Brozen endeavours to fupport his appellation by the term coagulated, afferting that they are a coagulated oil.

To this the Dr. replies, that here fuch an epithet is not fufficient ; I. Becaufe that, in the whole compafs of chemiftry, the word coagulated never can, nor ought to be attributed to a dry and cryftalline fubftance: On the contrary; 3. It is only to be afcribed to fuch things and circumftances, in which either inftanteoufly or gradually from more or fewer degrees of moilture, from a thin liquid fat, whether naturally fo or by the addition of another fubitance, fomething collect's itfelf by precipitation, and affumes the confiftence of coagulated milk, offa alba Helmontii, of a Rob, butter, unguent, or a refinvifcous fubftance, be the production afterwards either faline, earthy, fatty, refinous, or what it will, So long as the name coagulum or coagulated is ufed thereto, it cannot be a dry fubitance, but a humido-pingueous, a refino-vifcous matter. And even fuppofing the word was wrefted to exprefs' fubitances of a dry confiftence, tho hitherto not introduced into chemiftry; it mult at leaft be granted, that: it is never to be extended to a pellucid, cryftalline body that confifts of feparate, tranfparent, dry, regularly compos'd pars ticles, like a cryftalline lalt and continuing hard till detonation. 3. All coagulated oils, as of anife, rue, olives $2 c$, if coagulated to the higheft degree in a cold place, or in winter, do by no means turn to dry, hard cryitals, like vitriolated! tartar, nor into ftill larger cryftals like white fugar-candy, and confequently, fonorous upon fhaking them; but at moft into particles that externally refemble very fine leaves, yet feel fatty to the touch, and appear reged, as it were; $;$ befides, for the moft part they ufually degenerate into at permanent butyraceous or adipofe confiftence; and confequently, never into the hardnefs of camphire. 4. Coagulated oifs, with the leaft degree of heat, do immediately run, become thinner, and ufually lofe their ftate of coagulation; which does not hold of the aforefaid crytals, becaule they equally continue folid, both in fummer and winter, nay, evem tho' you apply a gentle degree of heat.
3. Mr. Brown uted the term condenfed, calling the cryftals, a coagulated or condenfed oil. Had he faid, that the cryftalss are a body condenfed from oil, he would then fall in with the Dr's. opinion : But as he fimply takes them for an oil, this caufes a wide difference: To fay that a thing is produced!,
$c_{\text {ondenfed or }}$ feparated from oil, denotes a different thing from faying a condenfed or coagulated oil ; by the latter expreffion we mean entire oil; but by the former, fomething feparated, produced a-new, and arifing from oil, and appearing to the eye quite different from the reft of the oil: Dil which fuffers a coagulation or condenfation, does fo not only in the 100th, 50 th, or 20 th part thereof, but in its whole entire bulk; and if not entirely, yet at leaft in its greateit part. But how does it happen, that here in the oil of thyme there only arileth or is feparated a fmall quantity of thefe elegant cry ftals, and the reft of the cil not to fhew the leaft change, or appearance of coagulation or condenfation, but equally continues of a perfect liquid, and thin oleaginous confiftence, as pure oil of thyme commonly does. The matter, from which fomething is produced, differs from the thing produced from it: We have before us an effential diftill'd oil; but when an entire new fubitance doth arife, is generated, or feparated and produced from it differing in touch, appearance or exterial form, fach a clear, pellucid, white, folid and cryftalline body can never be taken for the former dufkifh red, thin and liguid oil, and fo muck che lefs; as the whole quantity of oil is not coagulated or condenfed, can that fubftance be taken for a coagulated or condenfed oil, tho' feparated and condenfed, or rather cryltalliz'd from oil. And fhould the method prevail of calling the fubftances feparated and prepared from this or that fubject by the name of the fubject itfelf, with the addition of fome adjunct, what furprifing conclufions and ftrange diforders would thence arife in chemiftry; and our accounts and deferiptions of artificial things would be atmoft nothing other that equivocal, obfcure, and uncertain And fhould camphire be call'd an oil, only becaufe it is produced from an oil, and from is confiftence and figure only have ths adjunet coagulated or condens'd fuperadded thereto; with the fame propriety common malt fpirits might be called liaruid corm or feed, rarefied barley, fpirituous wheat, \&c. becaufe prepar'd from fuch grain. In like manner, the flowers of antimony might likefalt, condenforphorus, coagulated urine; lixivious cryftalline call'd by the name of the fubitance from which they and we prov'd, that they are produced or prepar'd from them, O-0 2
as that camphire of thyme; is produced from the oil of thyme; and thus feveral matters might be differently and more prolixly denominated: Unlefs, we likewife had regard to external differences, as confiftence, appearance, drynels, moifture, fatnefs, liquidity, pellucidity oppacity, folidity, hardnefs, foftnefs, and feveral other circumftances; and at the fame time confidered how to exprefs ourfelves in the moft concife and diftinct manner.

If, therefore, any thing can be properly exprefs'd by one fingle characteriftic term, it is ridiculous to make ufe of 2 or more terms; and confequently inftead of the word camphire, to call it coagulated or condenfed oil: any one underftands the meaning of the word camp bire, as that it denotes a cryftalline and condenfed body, nay, as condenfed from oil, and moftly confifting of oleaginous parts, \&c. Befides ${ }_{2}$ there are different methods in chemiftry, wherein a dry body is got from a liquid fubftance; and confequently we are here to make a diftinction, and not to defcribe every thing by the words, coagulated and condenfed; fince there is no fimall difference between the terms coagulated and cryffalliz'd, congeal'd, condenjed, infpiffated, precepitated, fublimated, \&c.

This; therefore, is the Dr's. explication, and the reafon, why he call'd thefe cryitals, camphire, and not an oil, os by any other name : As to the reft, it matters not whether Mr. Brown and orhers call them an oil or volatile falt, or what other name they pleafe to give them: Befides the Dr. is not the firft or only one who calld fuch a mixt, got from European effential oils, by the name of camphire, but Dr. Boerbaave in his Cbymice Infitutiones \mathcal{E} Experimerta p. 82. and quoted by $\mathrm{Mr} . \mathcal{B r o w n}$, fpeaks thus; 'Camphire fays be, is not only pro* duced from the camphire tree alone, but whicb is remarkable, - all aromatic plants may yield a camphire of their own kind:

- And Dr. Boerbaave frequently in his Colleges and lectures,
' explain'd himfelf further on thefe European oils from which
- camphire may be gor: And the learned and experienced
- Chemift M. Geoffroy, the younger, (whom M. Broven alfo
"quotes) in the Mem. of the Royal' Academy of Sciences for
' the year 172 I, fpeaks to the following purpofe: Oil of - turpentine, tho' rectified, depofites upon the fides of the ' bottle cryftals like fublimed camphire : I have obferv'd the - fame thing in the effences of mother-wort, marjoram, \&c. - And farther : 'Oil of fage,for inftance, and rofemary affume
${ }^{6}$ in time the fame fimell nearly: And fometimes even fome
of thefe approach to that of camphire. 1 myfelf had fome fage-water, which, kept upwards of a year, had acquir'd a very ftrong fmell of camphire, fo that one would have taken it for water, in which camphire had been quenched, \&c.'
And if M. Brown will not admit of the experiments and accounts of fuch great Men, but feem to doubt of them, much lefs will he thofe of many others, by whom it appears, that camphire was got, not only from feveral parts of Eaft-India vegetables, befides the tree, properly faid to yield camphire, as from the root of the cinnamon-tree, from zedoary, the mint of fweet ruhh of zeylon and from, fouthernwood, milefoil, cardamom, juniper, \&c; but likewife from European iage, rofemary, hyffop, marjoram, \&c. For, tho' Mr. Browen thus expreffes himfelf: EBut 1 do not - remember ever to have feen any thing of this kind in ' any other oils, excepting oil of thyme and mace'd: of which laft he fpeak thus: ' There appears fomething of a - cryftalline form floating on the upper part of this oil; yet ' of what kind, whether camphire or not, time will fhew.' Yet other people have feveral times feen and obferv'd fome fuch thing; it is, therefore, no argument, that what Mr. Brown has not leen, no body elfe ever faw; nor that any fuch thing never did, nor could happen; much lefs, that every thing is entirely falle, that Mr. Broten has not feen and verified: He owns indeed, that Mr. Moul Shew him camphire of marjarom; but becaufe it did not appear in every refpect the fame as common champire, he does not call it camphire, but coagulated oil.

Mr. Brown feems in fome meafure to doubt, or to fpeak more properly, to be in fufpenfe about his ownopiniong when he fpeaks thus: 'As to this falt, or coagulated oll - of thyme, \&c. And again; To which it will be proper, to 14 fubjoin fome reftimonies to this purpofe about coagulated - oils, or falts produced from oils.'

From his calling the cryftals in queftion, a falt or oil, a coagulated oll or falt produced from oil, he is in doubt, that: thefe cryftals are other than an oil; and perhaps, with equal reafon, a falt as well as an oil. Tho about the beginning of his Differtation, he deny's them the name of a falt; when he fays, 'which hitherto, have been improperly "call'd the volatile falt of thyme.' His doubt about this mattet may be gather'd more clearly from his adducing teftimonies
of there learned men, Dr. Slare, Helmont and Dr. Boerbaave: That Dr. Slare call'd the camphire of thyme a volatile falt, (tho' it admit of no folution in water, by which general teft alone it is excluded from that clafs) as alfo that fome precipitated falt was obferv'd in the oil of cinnamon, which yet could be no other than camphire; becaufe he himfelf adds, that this oil was without any addition or art diftill'd to a falt : On the contrary the inflances from Helmont and Boerbadve do not anfwer to this fubject, or prove a native volatile falt, or falt like camphire, fince they fpeak of a different real falt, namely of a volatile artificial falt ; i.e. of 2 volatile falt produced from oil and an alcaline fixt falt, as Mr. Brown himfelf alledges; Helmont, fays he, fpake thus of a falt made by art from the fame oil; 'but when oil of - cinnamon is mixed with its own alkaline falt \&c." And fo in like manner that falt or Sapo (as Dr. Boerbaave calls it) alledged from Hombergs experiment, muft be fome true volatile falt, mix'd with fome alcaline falt, if it was really foluble in water: But if of itfelf and without any addition it thot into a falt, it could an certainly be nothing other: than camphire; and confequently, no ways foluble in, nos commiffible with water ; whence Dr. Boerbaave adds. Buti we cannot eafily imitate the experiment; i. e. if without addition we would obtain a volatile falt, foluble in water, or 3 Sapo.

Dr. Neuman gave a definition or defcription of the compofition or conffituent parts of camphire, as that it confifts off an inflammable and ignefcent principle, or rarefied phlogifton, i. e. a fubtile fulphureous fubftance; which principle: fome, fimply call fulphur, in a large fenfe, but others, as Beccher and Stabl, a fulphureous, inflammable earth; or a fecond earth, ignefcible and phlogiftic; but generally it is: wont to be exprefs'd by the fingle term orooz 650%.

This defeription Mr. Broven underftood, as if the Dr. held, that this camphire could ftand or refift the fire ; from which itt appears that he had not read Dr. Stabl's writings; and confequently had no juft notion of the term phlogifton, fo common in that author.

We at length come to confider the differences, obferved byy Mr. Brown, between the camphire of thyme and the commom fort; and which undoubredly induced him to reject the cryftalline fubitance obtain'd from oil of thyme, as a cam. phise; and that becaufe, when mixt with other things, it
did not agree with the common fort in all refpects, but appear'd a quite different thing.

Now the Dr. makes no manner of doubt of the truth of Mr. Brown's obfervations, but frankly owns, that if the camphire of thyme is to be confidered, according to the reft of its relations to other bodies, it may confiderably differ from the common fort; but the Dr. never intended to extend it fo far, but rather to confider its primary properties, and fuch principally as were moft obvious to ferife; and by which the common camphire as well as the camphire of thyme are diftinguifh'd from all other mixts, being little folicitous about its other differences and peculiar qualities; nor could he (as has been already faid) with the fmall quantity he had then obtain'd, accomplifh any farther enquiries on it.

The reafons that induced the Dr. to compare the camphire of thyme with that of the fhops are thefe. I. The camphire of thyme is got from an effential oil, as is alfo common camphire. 2. It is a dry folid body; and fuch is common camphire. 3. It is friable, as is alfo common camphire; tho ${ }^{\circ}$ Mr. Brown deny this friability. 4. It is white, and fo is camphire. 5. Clear and pellucid; in the fame manner as camphire. 6. It confilts of divided cryftals; and in like manner does crude, unpurified, camphire. 9 . In fmell it ftrongly refembles that of its own oil or fpecies; and fo does camphire. 8. It is not foluble in water, any more than common camphire. 9. On the contrary, it is entirely and eafily diffolv'd in rectified fpirit of wine; and this likewife is known to hold of common camphire. Io. It is likewife diffolv'd by fipitit of nitre, and fo is camphire. And the Dr indeed, thought fuch correfponding circumfances fufficient at the very firff, to call fuch a fubtance camphire. But he trade mention of a general difference, namely, that from the true camphire-tree, a greater quantity of camphire than oil is got; whereas on the contrary, European vegetables yield ${ }^{\text {a }}$ I) great deal of oil, but little camphire: To which now the Dr. farther adds, becaufe European camphires confift of a great deal of oil, and a fmalier portion of camphire, confequently fuch are more eoleaginous in their compofition; or with refpeat to the common oriental camphire, more faturated proportion of its ingredients, has fewer oleaginous partile but on the conrrary more earthy ones; and in this laterer,

480

MEMOIRS of the

all the conftituent parts in general are found to be more firmly and better incorporated; that from thence likewife in mixing it with orher liquors, and with regard to its iublimation, its folution with oil of vitriol, its exhalation, precipiration and other relations, a confiderable difference may the more eafily be difcover'd between thefe two fpecies: Yet from thence it does not follow, becaufe camphire of thyme does not agree with the common fort in every, refpect, that therefore, this production from thyme is not camphire: For, in chemiftry ihould we folely regard the particular differing relations of things, and not take into the account the general and more remarkable properties in which they agree, and from the former draw conclufions, we could then indeed, compare together but a very few things, our judgment abour a great many would be too prolix and incoherent.

The Dr.gives an inftance in metals and falts. I. It is well known, that gold, filver, copper, iron, tin and lead, are reckoned perfect metals, and quickfilver an imperfect one; and that becaufe thefe fubftances poffefs the chief properties of the thing call'd metal; confequently, they connot be compared with ftones, earths, fulphurs, bitumen's, falts, glafs, or any other thing; and in fhort, with nothing better than metals; as camphire of thyme could not, according to the abovementioned properties thereof, be claffed with any thing more properly than camphire, and accordingly denominated : But according to Mr. Brown's way of reafoning, the above metals would not in all refpects be really metals, nor denominated fo; becaufe they do not agree with one another in all their relations and commixtures with other things, nor in their folutions, precipitations, fublimations, EEC. And he might argue thus; I take gold to be a true metal, becaufe it diffulves in aqua regid; but as filver can not be diffolv'd therein, it is, therefore, no metal. Again on the contrary, filver, and fome other metals, foluble in aqua fortis, are true metals, but gold not f_{n}, becaufe it admits of no fuch folution in aqua fortis. Spirit of vitriol difflives iron and copper, but neither gold nor filver ; thefe two noble metals would therefore be no longer metals. And this is exactly Mr. Brown's method of reafoning on the camphire of thyme, with regard to folubility, when he fays; 'oil of vitriol diffulves common cam" phire, but not the camphire of thyme; therefore, this prepa' ration of thyme is no camphire.'

Royal Societyo

ع. He might object the different colour and confiftence of the Solutions: For, fpirit of nitre diffolves this or that metal of a white colour, and the folution appears clear and pellucid: But becaufe the folution of copper is greenilh, that of iron an exceeding dufkifh red, and that of tin not entirely and always pellucid; and there latter folutions are widely different from thofe of pure filver, mercury, EJc. Such folutions therefore, as appear evidently different to the eye, are thicker, and in part not pellucid, are not folutions of metals; or the diffolv'd matters are not metals. For, in this manrer does Mr. Browen conclude of the folution of camphire of thyme in fpirit of nitre: Becaufe its folution has not the fame colour, confiftence or pellucidity with the folution of common camphire; camphire of thyme is therefore, no camphire: Whereas he ought to have confider'd, that, in the firtt place, fpirit of nitre, as to colour and pellucidity, produces different colours and caules manifold varieties in fime metals. 2. That fince camphire of thyme is got from a dufkith red oil, and befides, is greatly faturated with oleaginous particles; from thence alfo a much darker and thicker folution may eafily be produced.
3. As to precipitation, or the other relations of thefe folutions, Mr. Browen might object a good deal ; fince there occur many more differences between thefe, than between the two camphires. As to any farther relation of the folutions of metals one might object thus; a folution of filver, lead and mercury in fipisit of nitre yields true cryftals; whereas a folution of lead and tin with pipitit of nitre yields none; therefore, the former only, and not the latter are metals: A folution of mercury in the concentred acid of common falt by fublimation yields a cryitalline falt, but other metals not fo; therefore, mercury alne is a metal. Some metals in folution emit a ftrong fume; but orhers not. Some metals in foution precipitate fimething to the bottom of the veffel; but others not: therefore, fome only are metals, and not the reft. As to precipitation, there is no fmall number of differences obfervable in metallic folutions; the diffulved metal being fometimes precipitared, as a pure metallic calx: And again there is obtained different calces, void of all metallic brightnefs, and in part hardly reducible. But no one would affirm of thefe latter, that the matters, from which fuch calces were obtain'd, were not metals, becaufe in precipitation they had not the fame appearance; or becaufe they did not precipitate again in the torm of perfect bright metals. And ger Mr. Brown forms the fame
VOL. $1 \times 1 . N_{3}^{\prime 2}$
con-
conclufion about camphire, and its different precipitations and relations; namely, that the folution of camphire of thyme does not precipitate in the fame manner, as the folution of common camphire; therefure, camphire of thyme is no fpecies of camphire, or it does not belong to that genus of mixts. Such differences are alfo found in the folutions, precipitations and the other various methods of treating refinous bodies with fpirit of wine; nay from fome refinous folutions, a twofold precipitation may be fhewn, fo that the rofin either immediately feparates or precipitates to the bottom of the veffel, or the folution does not duly precipitate, but becomes only turbid, and lactefeent; and this in the fame folution, with the fame folvent, and precipitant: And from fuch a precipitation, it cannot be concluded, that the diffolv'd fubftance is not a true rofin.

In the copulation, folution, precipitation, fublimation and cryftallization of falts there occur almolt innumerable differences, and relations, that often are as diftinct as light and darknefs, or as oppofite to one another. For how widely do acid falts alone differ from each other? And even, when they are united with an alcaline, either fixt, or volatile, falt, and reduced to a neutral ftate. Novices themfelves are not uniacquainted with the wide difference betwixt acid and alcaline falts : But who on that foore would venture in a manner quite new, and on account of fuch occafional differences, or becaufe they do not agree in all refpects; that therefore this or the other is no falt: As becaufe, it either admits of no cryftallization at all, or is not cryftalliz'd in the fame manner as that other falt; or becaufe it will not fublime, or in its commixture with this or that other matter, not appear in the fame manner; or becaufe it precipitates in a different manner, or is not entirely reduced, or will not affume a dry confiftence; and a thoufand other variations, which mighe be mention'd, and which really happen in phyfico-chemical experiments, where falts are intermix'd. But fuch a method of reafoning is exploded by every budy.

Now camphire of thyme has 9 or 10 properties, in which it perfectly agrees with common camphire, as has been fhewn above; conlequently it pofiefes the principal properties of camphire: In regard to which, there is no other matter we know of, with which we could more fitly compare this white, folid, pelJucid, fragrant, inflammable, beautiful, cryftalline body than camphire. In like manner, lead, iron, copper and tin, can be referr'd to no other more proper clafs than that of metals; vitriol, common falt, alum and nite to no other clais than that of falts;
becaufe they poffefs the more remarkable requifite properties of falts, and agree with nothing other more than with them. And yet according to Mr. Brown's way of reafoning about camphire of thyme, it may be objected; that head, iron, copper, and tin, are no metals, becaufe they cannot fland the fire fo well as gold and filver, but may be burnt into a calx, fume away in part, and appear in a different manner in folution, precipitation, fub. limation, Esc. And that vitriol, common falt, alum, and nitre are no falts; becaufe they widely differ (not to mention other differences that might be advanced) from a pure acid, or alcaline, falt, or a fublimable fal ammoniac. But, if the aforetaid 4 fubftances of the mineral kingdom are metals, and referable to no other clafs with more propriety, and do joftly deferve that naine, tho' they widely differ from gold and filver: And moreover, if the other faline Subftances mention'd are true falts, tho' there be no pure acid, or alcaline, falts in nature; and they differ as mach from one another, as they do from many other falts: Why fhould we introduce in the vegetable kingdom a new method of concluding and defcribing; and on account of fome particular properties and differences, deny camphire of thyme to be a true camphire; tho this concrete of thyme, as to its principal properties agree as well with oriental camphire, as the aforefaid metals do with other metals, or the alove falts with other falts. And if we may call lead, tin, copper, and iron, metals; tho' they widely differ from gold and filver, nay from one another; and if we ufually call alum and vitriol, falrs, tho' they differ much from common, and orher falts; why might not this cryftalline body have the name of camphire given it, tho differing in fome refpects from the common fort.

To conclude, the Dr. once more repeats it. 1. That fo long as any thing claims the name of oil, it fhould be either cvidently liquid, or but little thickifh, and feel un\&tuous to the rouch. 2. That any thing pafing for a coagulated or condenfed oil, hould be thickifh, and not liquid, or but little fo; or at molt be of the conffifence of an unguent, and that in cold weather only; and contequently fiiff, yet feel greafy to the inuch; and upon applying the gentleft degree of heat, lofe again its coagulated form. 3. That whenever we obtain dry, folid and pellucid cryftals, appearing in the form of a beautivil iffelf; nay tho' they confift as to the greatelt part of their compofition of true oleaginous particles, yet the name of oil inamediaely ceafes, and the adjunct, coagulated or condenfed,
can no longer juftify that title; nor is there any neceffity for ufing fuch adjuncts, fince if fuch a production from effential oil be a cryftalline, dry, body, fuch as the fubitance before us, then the fingle term, camphire, may be fufficient, and confequently beft exprefs what fort of mixt it is; and that it is no other than a fpecies of camphire; and thus this our cryftalliform body remain camphire of thyme.

In a letter to the prefident of the Royal Society, dated Berlin April 11, 1733 Dr. Neuman frankly owns that he intended nothing other but to declare, that a matter unfoluble in water, and which appears in the form of hard cryftals, either in oil of thyme or other effential nil, is by no means a volatile falt, much lefs a coagulated oil, but a peculiar concrete fepasated from fuch oils; and in thort fuch a mixt, as cannot be more properly defigned than by the name of camphire.
Tbe fettling a nerv Genus of Plants, called after the Malayans, Mangoftans ; by Ur. Garcin. Phil. Trani, No 43 I. p. 232.

THE Niangoftans is a kind of pomiferous tree, that grows in the Molucca inlands, whofe fruit is one of the beft in the world for eating.
This genus has its flower compleat, tetrapetalous, regular, hermaphrodite, containing the ovariusn: Its calix is monopetalous, divided into 4 lobes, roundith on the edges, and hollow'd in the fhape of a foon. The ovarium is nearly cylindrical, with a tube upon it cut out in the fhape of a rofe, which covers it like a little cap. The famina, which furround ir, are fpherical at the top, and their number 4 times that of the pesala. When thefe are gone off, the piftil changes into a round fruit, adomed with its calix, and its tube cut in the flape of a ftar, with rays Equared at the corners: Its cortex, which is thick and brittle, inclofes a cavity filled with as many pulpous and juicy fegments as there are rays in the tube: Thefe fegments are white, in the fhape of a half moon, fticking together, and containing each but one grain of feed, which is oblong, fomething flatted, like an aimond, wrapt up in a tunica, which is cover'd with a hairy coat of fibres or veffels, which together with the pulp form the parencloyma of a fegment of the fruit. The leaves of the tree are entre, fmooth like thofe of the laurel, and grow oppofite to each other on the branches. The ftem of the tiee grows up ftreight to the top of its ruft; and its branches and twigs come cur oppofite to one another like the leaves. Dr. Garcin knew but one fpecies of this genus, which
which admits indeed of fome varriation, but without any other nark than what appears in the fruit. Mangoftans Garcia, Cluf. Bont : Arbor peregrina aurantio fimili fructu. Chuf. exot. 12. laur ifolia Favanenfis C. B. Pin. 4 万r.

The Mangoftans is a tree of a very moderate fize. It does not grow above 3 toifes (about 18 foot) high : Its ftem runs up ftreight to the top of its tuff, like the fir: This tuift is regular, in form of an oblong cone, compofed of feveral branches and twigs, fpreading out equally on all fides, without leaving any hollow.

The ftem grows at bottom to the thicknefs of a man's thigh, or about 8 or 10 inches in diameter; it afterwards gradually diminifhes in thicknefs up to the tuft: Its woid is white, while the tree is growing, but brownith when felled and dry: Its bark is a little tender, and eafily feparates from the wood; it is of a dark grey colour, and flit or full of cracks up the ftem ; but on the twigs it is more even and green, refembling that of evonymus, or fpindle-tree.

The branches grow out of them by ftories, and oppofite to one another: Thofe flories crofs each other obliquely, and not at right angles. The thicknefs of thofe branches is always proportionable to that of the ftem, at the place where they come out : This proportion is about I to 4 , or I to 5 . The length of the inferior branches of the tuft is 5 or σ feet; the others fhorter as they come near the top: The diftances of the flories of the branches are a littie unequal; but where they are wideft, they do not exceed the length of the greateft leaves, that is, 8 or 9 inches.
The twigs grow on the branches in the fame order as thofe do on the ftem, that is, oppofite to each other: The longeft are commonly of the length from one"s hand to the elbow. The larger twigs grow out to a certain diftance from the ftem; and the others, which garnifi the reft of the branches, always grow lefs and lefs towards their extremity. The branches and twigs never divide themfelves.

The leaves are large, entire, beautiful, fmooth, of a hining green on the upper fide, and of an olive colour on the back, pointed at their extremities. The rib which divides its extent into 2 equal pris, is ftreight, and equally prominent on both
fide finas. From the fides of this rib there iffue forth fibres pretty
foll by pairs, which extend themfelves in paral leis, and bent a little archwife quire to the edge of the leaf, where they unite into a thread, which forms there a kind of margin.

486

MEMOIRS of the

margin. The mafhes, and filaments, of the net, are not very perceprible: The fize of thefe leaves varies; the largeft are 8 or 9 inches long, but commonly 7. The breadth of each leaf is nearly equal to half its length; which proportion is always the fame in every leaf. Their pedicles are thick, fhort and wrinkled, flat on the infide, and rais'd in the fhape of an afs's back on the outfide, moft frequently half an inch long. They come out near, and on the extremities of the twigs, oppofite to each other like the branches themfelves. There feldorn appear above 2 pairs of leaves on each iwig; and thofe that dhoot out laft always form the extremity of that twig.

The flower is 2 inches in diameter, pretty much like a fingle rofe; it is compofed of 4 petala, almoft round, or a little pointed, about an inch broad, very thick, firm, flefhy, britrle, and fomewhat hollow'd into the fhape of a fpoon: Their greateft thicknets is near their bafis, upwards of a line, which decreafes by degrees towards the extremity : They entirely refemble the petala of a rofe, only that infead of being indented like a heart, they terminate gradually in romudion points, as has been faid ; their colour is allo like that of a role, only that it is deeper and lefs vivid; the bafis which is the thickeft and firmeft part, is the whiteft, and the moft brittle.

The pifill, or ovarium, is a round, or almoft cylindrical, body, 5 lines thick, rais'd 4 lines high: The upper part of this pifil, that is, its tube, is cut in the fhape of a timall rofe, covering the ovarium like a cap: The diameter of this cap is of the fame breadth with the ovarium, which it covers entirely, fticking very clofe to it. The colour of the ovarium is a pale or whitifh green, and that of the tube a fullied or dirty white.

The famina rife from the bafe of the piffil; they are whitifh, round at the tops, and rais'd to the circumference of the tube, applying themlelves to the ouarium: They are 16 in number; 4 for each petalum.

The calix is of one piece, expanded and cut into 4 lobes down to its bafis; thefe lobes are thick, round, fkinny, hollow'd in the form of a ipoon, and likewife refembling petala of rofes not fully blown: They feem to crofs one another like the petala: The 2 upper lobes are fomething larger than the lower ones ; they are greenifi on the outfide, and of a fine deep red within, which makes them moie agreeable to the eye than the petala; the red of the upper ones is more lively than that of the lower ones. In flurt all the!e lobes are hollower
than the petaia; they do not cover thofe later farther than half way their height: This calix inclofes all the parts of the flower: It is fupported by a pedicle 7 or 8 lines in length; its thicknefs being commonly $\frac{x}{3}$ of its length : This pedicle is green, and conftantly comes out of the end of a twig above the laft pair of leaves.

The fruit is round, of the fize of a middling orange: Its bignefs however varies very much, from 1 inch and $\frac{8}{2}$ to 2 inches and $\frac{x}{2}$ in diameter. Its top is cover'd with a fort of cap embofs'd, cut out in the hape of a rofe, or a ftar with rays fquared off, the breadth of a finger, or fometimes an inch in diamerer. The rays of this little rofe are moft commonly 6 or 7 in number, but feldom 5 or 8 . Thefe rays by being thus fquared form together a kind of polygon; this is the part which had ferved for the tube to the ovarium.

The body of this fruit is a catfula of one cavity, compos'd of a thick fhell, and brittle, fomewhat like that of a pomegranate, but fofter, thicker, and fuller of juice: It is commonly 3 lines thick, the colour on the outide of the cafe is a dark brown purple, mixed with a little grey and dark green; that on the infide of a rofe-colour; its juice is purple; this ikin is of a fty ptic or aftringent tafte, like that of a pomegranate, nor does it flick to the parts of the fruit it contains : The inner part of this fruit is a furrow'd globe, divided into fegments, much like thofe in an orange, but of unequal fize, and not adhering to one another: The number of thefe fegments is always equal to that of the rays of the tube which covers the fruit : The fewer there are of thefe fegments, the bigger they are: There are often in the fame fruit fegments as big again as any of thofe on the fides, as may eafily be feen in Fig. 7. Plase XII.

Thefe fegments are white, a little tranfparent, felhy, membranous, fibrous, full of juice like cherries or rasberries of the tafte of ftrawberries and grapes together: Each of the largeft fegments inclofes a grain of feed of the figure and fize of an: almond Atripped of its fhell, having a protuberance on one of its fides, which is nothing elfe but its navel: This grain is cor ver'd with 2 fmall ikins, the nutermoft of which ferves for a bafis to the filaments and membranes of which the pulp is compored: The fubitance of thefe grains, as to confiftence, colour and aftringent quality, comes very near to that of chefnuts. The calix always remains itticking to the fruit, to which it ferves for an ornatnent, and when half dried up, it is of the
colour of the pomegranate fhell on the outfide. It covers about $\frac{x}{6}$ part of the circumference of the fruit.

Garcias, Cluffus and Bontius, are the firf aurhors who make mention of the Mangoftans; but they have left us but indifferent defcriptions, and fo fhort, that it is not poffible to form from them a fufficient idea for difcovering its characters: The firft of thofe authors was ill informed, as to its fruit being yellow. Clufius has fpoke of it under 2 different names, without apprehending that it was one and the fame plant. The figure he has given of the fruit, and which he calls arbor peregrina aurantio fimili fructu, tho' ill executed, yet reprefents it enough to know it again. If in that figure the fruit appear fmall with refpect to the twig that fupports it, this can be for no other reafon; but becaufe he receiv'd from the Indies tome of that fruit which had been gather'd before its ftate of perfection, and afrer which he drew his figure. And hence it is, that the fruit being fhrunk up and imperfect, he found nothing, in it but a few fhrivell'd grains, not much bigger than thofe of a fig.

It is, however, furprifing, that the moft delicious fruit of all the Indies, and which yields to none of the beft in Europe, is that which hitherto has been leaft known: But as M. Garcin has often eat of ir, and found it as excellent, as it is reputed in the counrries where it is culrivated, he refolv'd to examine its genus, fettle its charagers, and give a delcription of it, which might for the future make it better known to botanitts, and other curious perfons.

This tree originally grows in the Molucca inlands; but for fome years paft it has been tranflplanted into the ifle of fava; and there are fome few at Malacca, in which places it thrives very well : Its tuft is to fine, fo regular, fo equal, and the appearance of its leaves fo beautiful, that it is at pretent looked upon at $\mathbb{B a t a v i a}$, as the moft proper for adurning a garden, and affording an agreeable fhade; yet there have been but few Europeans in the Indies who have made ufe of it for this purpole; becaufe they were unacquainted with it.

Travellers, who make mention of its fruir, always fpeak of it with great encomium's: Liinfchooten is the only one, who, after having given a detcription of feveral Indian fruits after bis way, thought it needlefs to defcribe the Mangoffans, as well as fume others; becaufe, fays he, they are little valued: Probably, he never faw it; but upon enquiry took upon credit befides the name, and confounded it with others, which are little efteemed.

There are few feeds to be met with in this fruit, that are good for planting; for; moft of them are but abortive. Sometimes this fruit is found fpoild within, which may be known by yellow fpots appearing on fome of the fegments: And then fome people frruple to eat them; but others make no difficulty about it. It is however certain, that they are not fo good; efpecially, if the fpots be confiderable. M. Garcin obferv'd that this corruption proceeded from the juice in the capfula, which being fpoil'd by the fting of fome infect, and thereby becoming yellow, and Apreading over the fegments of the fruit, tinged them of that colour, and thereby changed them. This wound is fo fimall, and fo hard to be difcoverd, that one is often left in fufpenfe, wherher there be any at all.
One may eat a great deal of this fruit without any inconveniencel; and it is the only one which fick people may be allow'd to eat without any feruple: It is very wholefome, refrefhing, and mure cordial than the ftrawberry.

Its fhell has the fame virtue with that of the pomegranate: At Batavia they make an infurion and a tincture of it againft loofeneffes, shid chiefly againt dyfenteries: The wood is good for nothing but fewel.
In the Memoires de Matbemat. EG de Phyf. de l'Acadern. Roy. des Scien. de Paris for the year 1692, p. 435. Amferdanz Edit. there is a fhort defcription of the Mangofitans by F. LDeze, which is pretty good: But as he took the calix for the flower, it is plain, that he did not obferve it till after the petala were fallen off. This defcription is too fhort and defective for determing from that alone the true characters of this genus.

Fig. 2. Plate XII. reprefents the flower, as it appears in the infide and ouifide; a the 4 petala of the flower; b the 4 lobes of the calix; c the tube, d the pedicle.
Fig. 3 . reprelents the calix as it appears in the infide with the pifilitum and faminas ϵ the end of the pedicle of the flower, which dupports the calix.

Fig: 4. reprefents a petalum as it appears on the back, feparated from the fower; fits bafis, which is the thickeft, firmeft and moift britle part; a four flamina belonging to the pefalum, arifing from the bafis of it and the piftillum.

Vor. IX. :

Fig. 5. The entire fruit feen from the fide of the calix or pedicle; b the calix; i the pedicle; k a part of its tube.

Fig. 6. The fame feen from the fide of the tube, which is cut out in the thape of a fmall rofe; l the tube which always fticks faft to the fruit; m the pedicle and part of the calix.

Fig. 7. The fruit cut into two halves, containing 6 fegments; n the fegments good to eat, of which tome are commonly larger than others; othe calix; p the pedicle.

Fig. 8. A feparate fegment of the fruit, in the fhape of a half moon, containing a feed.
Fig. 9. A feed feparated from the fegment, whofe coat is covered with filanents, which form the parenchyma of the fegment.

Fig. Io. A leaf of the tree which bears the mangofians, with its fellow cut off near the bottom, fupported by a piece of it twig.
A philofoppical and Biforical Account of the Aurora Borealis; by M. De Mairan. Phil. Tranf. No 43 I. p. 243.

THE frequent appearances of the Nortbern Lights in feveral parts of Europe and America, and the fur-prifingly beautiful phenomena obferv'd in fome of them, fuch as the rainbow colours, cariopy, Ec. have very juftly engaged philofophers in an enquiry into the caules of them. Several hypothefes have been invented and propofed, in order to explain thefe things. Moft of them fuppofe thefe phofphorus-like appearances to proceed from certain effluvia, either perfipired out of our earth, or at leaft paffing thro it. But M. De Mairan has thought of a caufe, very, diftant, as well as very different from thefe, vis. the atmolphere of the fun, which at fome times fhews itfelf under the appearance of a light, which he calls the zodiacal light; but at other times produces an aurora borealis. The zodiacal light is the purer unmixed atmofphere of the fun: But an aurora borealis is the effect of the folar atmofphere, confequent upon its making a defcent into, and blending itfelf with the atmofohere of our earth; at cerrain times and feafons of the year.
M. De Atairan has confulted the accounts of meteors, from the fifth cemury down to the prefent time, in the hiftorical part; and ruged them in regard of the feveral returns of
this phenomenon: By a return he does not mean barely a fingle appearance, but a feries of them after a ceffation or non-appearance for feveral years. Thus he makes but 22 returns from the year 400 to 1716 ; while the feveral appearances of thefe lights from 1707 to 1710 , afrer a ceafing to appear for 20 years, are reckoned but one return.

The aurora borealis is a luminous phenomenon, fo call'd from the place of its appearance, ufually in the northern parts of the heavens, and with a light near the horizon, like that of the morning dawn. This name is fuppos'd to be given it firf by M. Gaffendi; but it appears otherways from a place in his animadverfions on Diogenes.

The caufe of an aurora borealis, in general, M. Mairan takes to be a light call'd the zodiacallight; which, in reality, is nothing other than the atmofphere of the fun fipread on each fide of him along the zodiac, in the form of a pyramid. This is fometimes extended to fuch a length as to reach beyond the annual orbit of our earth; and in thefe circumftances fometimes to blend itfelf with our atmofphere; and being of an heterogeneous nature, produces the feveral appearances, which are obferv'd in, and ufually compofe the northern lights.
That the zodiacal light, or fun's atmofphere, is very different from the ambient wher, M. Mairan thinks evident, in that the wether reflects none of the fun's light, is exceeding rare, and altagether imperceptible. Wherher the zodiacal light of the folar atmofphere be any emanation from the body of the fun, a fpecies of effervefcence, or depuration of its groffer parts, an amafs of heterogeneous parts, diffufed in the æher, that meeting from ahi parts, tend towards the fun, $\mathrm{E}_{\mathrm{c}} \mathrm{c}$. he does not undertake to determine.

It is enough for his purpofe, that it is of a laminous nature, whether in tififf, or becaufe ftrongly illuminated by the rays of the fun, whofe body it environs. He does not deny but that it may allo be of an inflammable nature; nay aftual flame or fire, tho' very fine and rare.

He obferves, that the form, in which the folar atmofphere is commonly feen in total eclipfes of the fun, is round, tho' fometimes conical ; At all other times it mont ufually prefents itfelf to us in the form of a lucid pyramid, or lance, lying oblique to the horizon, along the zodiac; and forthat reaton call'd by M. Caffini, the elder, the zodiacal light. Mr. Childrey in his hiftory of the natural and arrificial rarities of Eugland

492

MEMOIRS of the

defcribes it thus: 'There is one thing which 1 muft needs a recommend to the obfervation of mathematical men, which - is, that in February, and for a little before, and a little - after that month, as I have obferv'd feveral years together " about fix in the evening, when the twilight was almoft - departed the horizon, you fhall fee a plainly difcoverable - way of twilight, ftriking up-towards the Pleiades, and

- feeming almoft to touch them. It is to be obfervid any - clear night, but it is beft feen illuni nocte. There is no * fuch way to be obferv'd at any other time of the year, that
- I can perceive, nor any other way at that time to be per-- ceiv'd darting up elfewhere; and I believe it has been, and will be, conftantly vifible at that time of the year: But a what the caufe of it in nature fhould be, I cannot yet " imagine, but leave it to farther enquiry.'

Upon a farther and clofer confideration of this matter, M. Mairan takes ir to be the folar atmofphere.

And Dr. Derbam informs us, that about a quarter of an hour affer fun-fet April ${ }^{3}, 1707$, he perceiv'd in the weftern parts of the heavens a long flender pyramidal appearance, perpendicular to the horizon: The bafe of this pyramid he judged to be the fun, then below the horizon; its apex reach'd I 5 or 20 degrees above the horizon; it was throughout of a rufty red colour, at firft pretty vivid and ftrong, but the top part much fainter than the bottom nearer the horizon. He did not remember to have ever feen any thing like it, except that white pyramidal glade, now call'd the aurora borealis. which refembles it except in colour and length. Again on the zoth of Marcb $1 \% 15-16$ in the evening, he efpied a very odd fort of light in the conftellation Taurus: This glade of light had the fame morion that the heavens had, and was much like the tail of a comet, but pointed at the upper end. This lighr, he doubts not, is fuch as Dr. Cbildrey firft obferv'd in Ensland; and Caflini and others afterwards in France.
M. Mairan procecds to give an account of the true figure, extent, fituation, \&oc. of this light, or atmolphere of the fun. Its true figure he judges with M. Fatio to be lenticular, and he gives a projection of it upon the plane of the fun's equator, the eye being fuppos'd in the axis of the fun, produced thro' his fouth pole at fuch a diftance, as makes the folar atmofphere appear under an angle of 45 degrees: In it you have a view of the nodes, poles, limits, declination
declination and extent, paffing thro' and beyond the orbits of Mercury and Venus, and in fome parts beyond the orbismagnus. And he demonftrates its extent from feveral oblervations of the elongations of the apex of this pyranid from the centre of the fun; which bas been found to be fomerimes double that of Venus, and at other times 90 degrees, and once or twice upwards of 100 ; whereas an elongation of 90 degrees gives the diftance of the apex from the fun equal to that of the earth at the time of obfervation.

As to the changes, both real and apparent, to which the zodiacal light or folar amofiphere is liable; its length bas been for fome time upon the increafe, afterwards in a diminifhing condition; and has been alter'd fo much in the compals of 37 months, as to have been 30 degrees longer at one time than ar another. The changes as to luminoufnefs, denfity, and tranfparency, have likewife been found to be confiderable. And fomerimes the zindiacal light has been fo rare and weak as to be but juft vifible; afterwards for a long time not vifible at all.
M. Nairan obferves, that thefe confiderations may ferve in fome meafure to account for the inconftancy of the curora borealis, as alfo for its non-appearance for fome years; fince it owesits original to, and has to clole a connection with the zodiacal light, whofe appearance is fo uncertain: Add to this, the zodiacal light, as he afrerwards hiews, muft not only be of a fufficient length and denfity, but the earth muft be in or near the nodes, formed by the interfection of the plane of the fun's equator with the plane of the ecliptic.

And as to the feveral methods by which mathematicians find the greateft heights of the atmofphere, and of the region ufually poffeffed by the aurora borealis; fuch as the duration of the twilight, and the height of the mercury in the barometer, M. Mairen rejects them as infufficient for that purpofe; the atmolphere being much higher than what lyas been ever found by them, and confifting of a fluid much finer than the grofs or common air, the height of which laft only is meafurable by thefe methods.
His method of fertling the altitude of he nortbern lights is founded upon feveral obfervations, made at very diftant places at the fame time; and be fixes fome aurorce boreales to be but 100 leagues, tho' others are no lefs than 300 ; and the far greater number of them about 200 leagues above the furface of the earth.

494

MEMOIRS of the
M. Cramer computes the height of the aurora Gorealis, feen at the fame time at Geneva and Montpellier, Feb. I5, 1730 , to be $\frac{213}{1000}$ of a femi-diameter of the earth, i. e. about 160 leagues.
M. Meyer has propos'd, in the Mermoirs of the Academy of Petersburg, a very ingenious method of finding the height and diftance of a boreal arc from any obferver, by a fingle obfervation: M. Mairan applies this method to fuch aurore boreales as were capable of it, and finds that the boreal arcs. of feveral were no lefs than 100 leagues high.

The lumen boreale commonly appears in the northern parts of the heavens; becaufe tho' the whole atmofphere of the earth be involved in the zodiacal matter, or folar atmofphere; yet it is thrown off both ways from the equatorial towards the polar regions.

This is owing to a double caufe; the firt is the centrifugal force, arifing from the diurnal motion of the earth, which being greateft at the equator, and gradually diminiming as you approach the poles, where it vanifhes; makes greateft oppofition there, and not only hinders the entrance of the zodiacal matter into the earth's atmofphere, near the equarorial region, but turns it afide into a courfe towards each pole; and M. Mairan does nor queftion but an aurora auftralis might be feen at proper times in the fouthern temperate zone, juft as an currora borealis is in ours, and attended with fimilar phenomena, were there but attentive obfervers.

The fecond caufe is the progreflive motion of the earth in its annual orbit near one half of the year with the north pole foremolt; and in the other half with the fouth pole, moving thro' the zodiacal matter.

The natural confequence of which will be a heaping up of matter, more on the polar than the equatorial or temperate regions; and this accounts in part for the declination of the centre of the luminous arches, fumetimes near 10 degres from the pole; the direction of this motion of the earth not coinciding with the direction of the axis of the earth at thofe times.

The dark circular fegment, next the horizon, appearing like a heavy black cloud or mift, is formed out of the denfeft and fuecifically heavieft parts of the zodiacal matter, which in their defcent mult fink deepefl into the earth's atm fophere, and are
leaft inflammable in their nature, while the rarer and lighter parts, which are more inflammable and luminous, if not adtaally inflamed, form the arch or arches that lie above the dark fegment. He fpeaks of a fort de l'incendie, a place where the zodiacal matter collected together, and moving or paffing thro' it, is actually turned into flame. Thus long trains of defcending zodiacal matter, arriving in their defcent at this place, and being kindled, or at leaft reflecting the light of that incendium, produce the feveral columns or ftreams of light that appear above, or behind the obfcure circular bate, or luminous arches.

The breaks, fometimes vifible in thele arches, are occafion'd by the defcent and paffage of feveral difcontinued trains and flakes of the denfer and leaft inflammable parts of the zodiacal matter, between the eye of the fpectator and the luminous arch.

The various colours arife from a feparation of the rays of light from each other, either by a fort of filration in paffing thro' medium's of different denfities, or by the divergence of the differently refrangible and colour'd rays; or rather from the different celerities of thofe rays, after the manner that the colours are formed in clouds near the horizon about the rifing or fetting fun.

The canopy, corona or glory formed in a compleat aurora borealis, by a concourfe of the rays of the matter of this phenomenon, near the zenith of the place, he takes to be purely optical; a fimple appearance arifing from a fingular diftribution of feveral perpendicular columns, or trains of zodiacal matter. This exactne's and regularity in the diftribution makes it an uncommon phenomenon: So that among roo auroice boreales that have been obferved, he has only met with 3 attended with a corona.
M. Mairan takes notice of feveral appearances in narure, that feem to be explicable by his hypothefis of a folar atmofphere, fuch as the nebulce, or lucid ipots, obterved among the fixed. fars, the fots in the fun, the atmofphere and tails of comets, EGc.

The nebul a are certain luminous fpots or patches, which dif. cover themfelves only by the telefoope, and appear so the naked cye like fmall fixed flars. They are 6 in number, and accurately defcribed in TP3il. Tranf. N 347 . Some of them have no fign of a ftar in the middle of them, and are properly nebula; orhers have, and then they are calld nebulofe. They are look'd upon by fome to be in reality nothing other than the
light

496 MEMOIRS of the

 light coming from an inmenfe great fpace in the wher, thro which a lucid medlum is diffus'd, that flines with its own proper duitre, making a perpetual uninterrupted day, by no means owing to the illumination of a central body, or flar.But M. Mairan feems to be of another mind; and queries thus. Since the fixed flars are of the fame nature with our fun, may not fome of them have atinofpheres furrounding them, fo Iuminous and extenfive, as to become vifible to us by a light eafily diftinguithable from that of the central body: And may not atmofpheres of others be to dente as well as luminous, and extenfive, as may fuffice to obfufcate the light of the far involved in it? And are not the nebulof of of the former fort, and the mebule of the latter? The lucid dpot in Andromeda's girdle, which after Hevelius M. Mairan continues to call a nebulora, was found by M, Cafini the elder to refernble the zodiacal light in fome circuinftances, and by M. Kirch to have fuffer fome changes, appearing and difappearing by turnc.
M. Wairan oblerves by the way, that this lpot was frit dif: cover'd, not by M. Bullialdiss in 1660, as is conmonly bellev'd, but by M. Simon Marius in 1612, who fully decrribes it in the preface to his Mundus Fovialis.

The lominous Pace round the nebulofe of Orion's frord. difcover'd and defcrib'd by M. Hujgens, M. Mairan rakes to be an affemblage of the feveral atmolphers of the ftars, plainly vifible within that fpace, and probably of fome others that are conceald from our view. The irregularity of the thape is no dificulty, it arifing from the diferent, and to us feemingly irregular poffitions of the ir atmoficeres. He adds as a confirmation of his hypothefis, that the brightnefs and very figure of this fpace have fuffer'd fome alterations fince M. Huygens's cime: Thatinne of the ftars, delineated by M. Huygens" withnut any furrounding light, has fince been found to have a pale light, like an armofphere, furrounding it.

Is not the folar atmophere liable to frequent fermentations, and fubtequent precipitations of its grufer pars towards the furface of the fun? And are not the different degrees of brightnefs and tranfiparency owing thereto? Since the changes in our atmofphere are not fufficient to account for the non-appearance of the zodiacal light in fome convenient feafons and clear nights.

Nay not the fpots, of late fo often oblerved in the furface of the fun, he owing to thefe precipitations of the groffer parts of the zodiacal light; fince there leems to be fome analogy or cofsefpondence between the frequency, ceffation, and returns, of thefe

ROYAE SOCIETY.

hefe fpots, with the ceffation, returns, and appearances; of the

 zodiacal light?Are not the inferior planets, viz. Mercury and Venus, almoft always immerfed in the zodiacal matter? And may not that be one reafon, why it is fo difficult to obferve fpots in them? May not a change in the denfity, or magnitude of the folar atmofphere, be one reafon why the aftronomers at Paris have not been able to oblerve thofe fpots in Venus's difk that have been taken notice of, and defrib'd by M. Biancbini at Rome, a little before, fince the telefcopes at Par is were of equal length and goodnefs?

May not the augmentation of the quantity of matter in the earth and inferior planets by the continued accurnulation of the zodiacal matter upon their furfaces, during a courfe of feveral ages; produce, amning other things, fome alteration in their periodicel motions?

May not the atmofphere and tail of a comet be owing to the zodiacal mater, which the comet during its paffage thro' the folar atmolphere intercepts, and afterwards carries away with it, in its afcent foom the fun?

- Is not the earth fafe enough from all danger of any inundation, much more of an univerfal deluge, tho' it hould pafs thro' the atmofphere, or tail of a comet? Since the effects of fuch a paffage can only be an aurora borealis, whofe matter is not at all of a watery vaporous nature? A coniagration rather then an inundation might have been imagined to be the natural confequence; but experience informs us, that if this hypothefis be admitted as genuine, our earth has been entirely plunged in this zodiacal matter, without any fenfible heat attending it.
Of Eleatricity ; by M. Du Fay. Phil。Tranf. $N^{\circ} 43 \mathrm{I}$. P. 258.

THE writings of Mr. Gray and Mr. Hauksbee firt put M. Du Fay on the fubject of the electricity of bodies, and furnith'd him with the hints that led him to the following extraordinary difcoveries.

1. He found, that all bodies (metallic, foft or fuid ones ex. cepted) may be made electric, by firlt heating them more or lefs, and then rubbing them on any fort of cloth: So that all kinds of ftone, as well precious as common; all forts of wood; and in general, every thing he made trial of, was excired by beating and rubbing; except fuch bodies as grow fiff by heat, as the gums, which difiulve in water, glue, and fuch other Vor. $\mathrm{IX} . \mathrm{I}_{3}$
fubftanees. It is alfo to be remarked that the hardeft fones and marbles require more chaffitg or heating than others; ; and that the fame ruleobtains with regard to the woods: So that box, lignum vite, and fuch others, muft be chaffed almoft to the degree of burning; whereas fir, lime tree and cork, require but a moderate heat.
2. Having read in one of Mr. Gray's experiments in Pbil. Tranf. $\mathrm{N}^{2} 422$. P . 227 . that water may be made electrical by holding the excired glafs, tube near it (a dilh of water being firtt fixed to a ftand, and that fet on a plate of glafs, or on the brim of a drinking glafs, previouny chaffed, or otherwife warmed) M. Du Fay found upon trial, that the fame thing happen'd to all bodies without exception, whether folid or fluid ; and that for that purpofe it was fufficient to let them on a glats fand, flighly warmed, or only dried, and then by bringing the tube rear them, they immediately became electrical. He made this experiment with ice, with a lighted woodcoal, and with every thing he could think of; "and he conftantly remarked, that fuch bodies, as of themfelves were leaft electrical, had the greateft degree of electricity, communicated to them at the approach of the glafs-tube.
3. Mr. Gray fays in Phil. TranS. $\mathrm{N}^{\circ} 417$, p. 44 that bo. dies attract more or lefs according to their colours. This led M. Du Fay to make feveral very fingular experiments. He took 9 filk ribbons of equal fize; one white, one black, and the other feven of the 7 primitive colours; and having hung them all in order on the fame line, and then bringing the tube near them, the black one was firf attracted, the white one next, and the others in order fuccefively to the red one, which was: attracted leaft and the laft of all. He afterwards cut out 9 Iquare pieces of gaufe, of the fame colours with the ribbons; ; and having put them one after another on a hoop of wood with leafgold under them; the leafigold was attracted thro all the coloured pieces of gaufe, but not thio' the white or black : This at firft inclined him to think, that the colours contributed much to clentricity: But 3 experiments convinced bim of the contrary; the firf, that by warming the pieces of gaufe, neither the black nor white pieces obftructed the aetion of the electricall tube more than thofe of the other colours: In like manner, the ribbons being warmed, the black and white were not more ftrongly attraEted than the reft. The fecond is, the gaufe and ribbons being wetted, the ribbons were all equally attracted, and all the picces of gaufe equally intercepted the action off electricic
electric bodies. The third experiment is, that the colours of a prifm being thrown on a piece of white gaufe, there appeared no differences of attraction: Whence je follows, that this difference proceeds not from the colour, as a colour, but from the fubftances employed in the dying: For, upon colouring ribbons, by rubbing them with charcoal, carmine, and Juch other matters, the differences proved no longer the fame.
4. Upon communicating the electricity of the tube by means of a pack thread, after Mr. Gray's manner, he oblerved the 'Experiment fucceed the better for wetting the line; and that it may be fupported on glafs tubes inftead of filk-lines: This experiment he made in'a garden at 1256 foot 'diftance, tho' the wind was high, and the line made eight returns, and paffed thro' two different wallks: By means of two filk loops he adjufted two lines in fuch a manner, that theit ends were but a foot diftant from one another, and he remarked that the electric virtue was ftill communicated: Mr. Gray had Phil. Tranf. No 42σ. p. 43 done the fame with rods.
5. He furpented a child on filk lines, and made all the furprifing experiments defrribed by Mr. Gray: But having tried the fame experiment on his own body in the fame manner, he obferved feveral things very remarkable. I. When he took the pafte: board, or ftand, on which the leaf gold was laid, into his hand, neither his other hand, nor face, had any attraction': But if another perfon came near him, that other would attract it with his face, his hand, or even with a ftick. 2 . While M. Du Fay was fufpended on the lines, if the electric tube was brought near one of his hands, or legs, and then another perfonap. proached him, and paffed his hand within an inch, or thereabnuts of his face, legs, hand or clsaths, there immediately inlued from his body one or more pricking fhoots, with a crackling noifé, caufing a little pain in both, like thar froin the fudden prick of a pin, or the burning from a fpark of fire, athd as fenfibly felt thro' one's cloaths, as min the bare hand or face; and in the dark thefe finappings are fo mariy fparks of fire:" But they are not excied if a bit of wood, cloth or any other matter than a living body be paffed over the perfon futpended on the lines, unlefs it be a piece of metal, which very nearly produces the fame effet. A ny other living animal doth the fame, if put on the lines, and firt the tube and then the hand be applied near it. But it is otherwife if the experiment be made with the carcafe of an animal; for, then one only perceives, if it happen in the dark, attll uniform light, without finppings or fparks.
6. On making Otto Guerike's experiment, which is to repel a down-feather by an excited ball of fulphur, M.Du Fay perceived the fanie effects produced not only by the tube, but by all electric bodies whatever: And he difcovered a very fimple principle, which accounts for a great part of the irregularities, that feem to accompany mof of the experiments on electricity, which is, that electric bodies attract all thofe that are not fo, and repel them fo foon as they become electric, by the vicinity or contact of the electric body: Thus leaf-gold is firft attracted by the tube, and acquires an electricity by approaching it, and of confequence is immediately repell'd by it ; nor is it re-attracted, while it retains its clec*ric quality: But if, while thus futtained in the air, it chance to light on fome other body, it immediately lofes its electricity, and confequently is re-attracted by the tube; which, after having given it a new elé̂ricity, repels it a fecond time, which continues fo long as the tube keeps its electricity.
Upon applying this principle to the various experiments of electricity, it clears up a number of obfeure and puzzling facts: For, Mr. Hatksbee's famous experiment of the glafs globe, in which filk threads are put, is a neceffary confequence of it: When thefe threads are ranged in form of rays by the electricity of the fides of the globe, if the finger be brought near the outfide of the globe, the filk threads within fly from it; which happens only becaufe the finger, or any other body applied near the glafe globe, is thereby rendred electrical, and confequently repels the filk threads, which are endowed with the like quality: And in the fame manner may one account for mof of the other plenomena; which feem inexplicable withour attending to this principle. -59. M. Du Fay hit by chance on another principle, more univerfal and remarkable than the preceeding, and which throws a new light on the fubject of electricity, and is thus: There are two diftinct electricities, very different from one another; one, he calls vitreous elecricity, the other, refinous eleetricity: The firt is that of glafs, rock-cryital, precious fones, hair of animals, wool, ESC. The fecorid, that of amber, copal, gum-lac, fik, thread, paper, ह゙c, The chaxaterific of thele two clectricities is, that a body of the phtreous elećricity, for inftance, repels all fuch as are of the fame clectricity with it, and on the contrary, attrats all thofe of the refinous electricity; fo thar the tuber made electrical, will repel glais, cryita, hair of animals, ecic. when

When alfo rendred electical ; and attract filk, thread, paper, \& tho sendred eleetrical likewife: Amber on the conitrary will attract electric glafs, and other matters of the fame clafs, and repel gúm lac, copal, filk, thread, \&c. Two filk ribbons, rendred electrical, will repel each other ; two woolen threads' will do the like; but a woolen thread and a filk thread will mutually attract one another. This principle very naturally explains, why the ends of threads, of filk or wool, recede from one another in form of a pencil or broom, when they have acquir'd an electric quality. From this principle one may with the fame eafe deduce the explanation of a great many other phenomena.

In order to know immediately, to which clafs of electicity any body belongs, you need only render electrical a filk thread, which is known to be of the refinous clafs, and fee whethen that body rendred electrical, attracts or repels it : If it attracts, it is certainly of the vitreous kind of eleleetricity; if on the contrary it repels, it is of the fame kihd of electriciry with the filk, i.e of the refinous. M. du Fay, likewife obferved, that communicated elearicity retains the fame properties'; for, if a ball of ivery, or wood, be fet on a glafs ftand, and this ball be rendred electric by the tube it will repel all fuch matters, as the tube repels ; buf if it be excited by applying a cylinder of gum-lac near it, it will produce quite contrary effeets, viz precifely the fame as gum-lac would produce. To fucceed in thefe experiments it is requifite, that the two bodies b.ought near each other, to difcover the nature of their slectricity, be rendred as electrical as poffible for, if one of them was not at all, or butiweakly excited, it would be attracted by the other, tho of that fort that fhould natarally be repelled $b y$ it: Bur the experiment will always fucceed perfectly well, if both the bodies are fufficiently electrigal an
Expexinients and Obferuations on balbous Roots, Plants, and Seeits groving in Water; by Mr. Guteis. Phil.
 N R Curteis took a couple of comtron penny garden painted the pors and putricd the corks, that no water in the drain thre"'s then he had a couple of boards, "cut to fie the tops of the pots, bored with feven holes at equal diftances,
to place his bulbs in, and likewife as many fmall holes for placing of fticks, to tye the ftems of the flowers to: He then planted hyacinth, narciffus's, tulips, and junquils, and filled the pots with water up to the board, fo that the bulbs ftood only upon the water, where they blowed very well, and made the fineft appearance, beyond any flower-pots that could be drefled by gathered flowers. After the bloom was over, he fet them out in his garden, as not worth preferving ; where they ftood till towards Midfummer, and he took no farther care than giving them at times frefh water, as it petfinired or evaporated, and when the rains filled the pots, he emptied them down to the boards again; but the bulbs Shrinking, fome of them nlipp's thro' the holes, down to the bottom of the pot; and about Midfummer when their leaves began to grow yellow, he went with a defign to pull them up, and throw them away; but he was furprifed to find the bulbs buried in the water, grown firm, and too large to be drawn back thro the holes, being found and fit for blowing the next year, and increafed in off fets: This put him upon another experiment of blowing his bulbs under water; which he found anfwer beyond expectation; for they rather out-did thofe, that grow in the ground, in the ftrength of their ftalks, clearnefs of their bloffoms, lafting of their bloom, and the difference of their feafons; which may be fo managed, according to the warmth of the rooms, they are kept in, as to have the fame forts in flower from Cbrifma/s till the natural time of their bloom in the open ground, which is March and April.

But finding it very troublefome to keep the boards fixt under water, he thought lead might anfwer the purpofe better; whereupon he procur'd fome Sheet lead of about 4 pounds to the foot, cut fo as to fit his pot, and made holes in it proportionable to the bottoms of his bulbs, and likewife fmall holes to fix fticks for the fupport of the leaves and ftems of the flowers; he put a little coarfe fand in the bottom of the pots, thinking it would fupport the fticks, and keep them fready : But when he came to make ufe of the fticks, the fand gave way. He then made falfe bortoms with lead, and cut holes oppofite to thofe in the top, which anfwer'd his purpofe. Upon taking up the bulbs to put in thefe falfe botoms, he found the fand had corroded the fibres, and changed them all like iron-mould, that he thought they were foild : but rincing them in 2 or 3 wateres, it came clear

4 -1 : bly isf.

off, and on fixing his falle bottoms, and placing the bulbs in their holes, and filling them up with frefh water, they recover'd, and never changed again in the clear water, but thriv'd and put forth their flowers very kindly; tho' by the experiments he had tried, before he could fix them right, he had often planted and tranfílanted them. But he found afterwards that glafs jarrs of the form reprefented in PI. XIII. were more convenient, both for feeing the progrefs the roots made, and for knowing when they want to be clean'd.

Fig. I. PI. XIII. reprefents one of thefe glafs-jarrs, containing the following flowers.
$\left.\begin{array}{l}\text { I Golden fun } \\ =\text { Bofflman }\end{array}\right\}$ Narcifus's
3 Keyfers jewel?
4 Pulchra
5 Janus

Hyacintbs

Fig. 2. reprefents the profile or fection of the fame jarr ; 0 the ficks to tie up the leaves and ftems of the fowers; b the upper lead with holes to fupport the bulbs and ficks; c the under lead with holes to keep the fticks fteady.

By feveral experiments on dried bulbs, and thofe that were taken freth out of the ground, he finds the dried ones do beft: For, thofe taken growing out of the ground, being full of moifture, will not to foon upon changing the element, agree with a new one; the fibres they had ftruck in the ground always ror, and they mult make new ones in the water, whereby they require ? long time before they can recover themfelves enough to flower. The bulbs will not rot; yet they will not be fo firong, as thefe put into the water when dry, which fill themlelves with moifture by degrees: Therefore, when he plants his bulbs, he fers them at firft on the top of the water: For, he found by 2 or 3 experiments, that thofe planted under water did not pufh out their fibres fo ftrong, as thofe fet, upon the water; the reafon of which he takes to be, that they were filled with water too foon; whereas thofe fet upon water attracted it by degrees, and fo made both the fibres and bulbs grow ftronger; and then about 5 or 6 weeks after planting them, as the frbecs pain nut, be gradually fills the water higher and higher, till the whole bulb he cover'd; and fo keep thena

504

M.EMOIRS of the

till the bloom is over, and the feafon for drying them returns.

He was furprifed at one obfervation, viz two of his hyacinths were mouldy, which would canker and eat holes thro' feveral of the coats or fcales; this he picked and cleaned feveral cimes; but ftill it fpread farther and farther: but foon after they were cover'd with water, he could perceive them heal by degrees, till they became perfectly found, and blew their flowers as kindly, as thofe that had continued perfectly found.

By another experiment he tried what bulbs would do if kept all the year round under water: He left in water a Narcifus, a hyacinth of Peru, and feveral junquils, that were planted in OCtober 1732 , and which became as found and ftrong, as thofe he took out and dried, and promifed fair for a bloom; he obferv'd that their old fibres do not rot, till they are ready to pulh out new ones.
Another obfervation feems worthy of notice; one of his double byacinths, commonly call'd Keyfer's jewel, brought 2 pods of feed to maturity, which be has blow'd for 14 or 15 years fucceffively in the ground, and could never find them make any thing towards feeding; and he has reafon to think that feveral other bulbs would have feeded, if he had taken timely care of them; but he did not perceive it, till it was too late.

Mr. Miller in Phil. TranJ. $N^{\circ} .418$. intimates that bulbs fet in glaffes grow weaker and fhould be renew'd every year with frefh ones; but Mr. Curteis obferves, by this way of raifing them under water, that at their taking up, they are as large and fome of them Itronger than when they were planted, and if they be dried at the proper leafon, will produce a fecond year as well as freth ones.

Mr. Curteis likewite planted ranunculo's and amemone roots, which grew and thot up the ftems of the flowers very ftrong; but the buds of the flowers were blafted, which he is apt to think happened from their being crowded too much, having no convenience to give them freth air enough.

He alfo planted auricula's and pinks; the pinks flower'd, but the auricula's were not ftrong enough , both of them were fill growing, and he was in expectation they would blow next feafon.

He alfo tried feveral fhrubs, as rofes, jeffamines and honeyfuckles; which all grew and thot out fref fibres; and the rofe tree made 6 ftrong buids for bloffoms, but accidentally fetting them out in a hot fun-thiny day in Aprib, they were all fcorch'd up, that they came to nothing. He obfervid that ffrong fuckers cut off 2 or $\frac{3}{3}$ inches under ground, without any fibres, grew the beft:

By another experiment he was willing to try what the fucculentiplants would do in this way: He took a leafof the opuntia or Indian fig, and laid it by to dry 3 weeks or a month, till it had Joit all its moifture, and was rothing but a dried fin: He then planted it in water in the beginning of 15 fuly, and rich it to a ftick that was fixt in one of bis leads; and the filled the pot fo, that the bottom of the leaf was $\frac{-3}{4}$ offan inch in the water; in about a month's time the leaf filled, fruck out fibres and put forth a fref leaf, which was growing, and making as much progrels as fuch a plant would do in the earth, in the fame fpace of time.

- Dr. Mortimertold Mr. Curreis he had placed beans upon water, which bloffomed and podded: This put the latter upon trying the experiment with them, and peafe at the fame time. He planted ' 6 beans in a pot, and fixed fticks in it to fupport the ftems as they grew ; they bloomed as freely as thofe planted in the ground, but did not pod fo well, having not above a pod or two on each, which catne to perfection, and ripened their feed; but this might happen for watt of a little more experience: The peafe, which were of the dwarf 1ott, grew a litrle to much, and only pat out 3 or 4 bloffoms at the extremity of the tops, but every blot fom brought a peafe cod, and ripend its feed.

This growth of the beans and peafe made Mr. Civteis imagine that other feeds would fucceed in the fame maner, knowing they would chip upon being laid for a little time in water, or in a moift place: The only difficulty was to invent fome thing proper for their fupport in growing, The firt thing he tried was boring very litule holes in a piece of lead, fixt in a por, and fowing the feeds thereon: He found they would fprout; but as the water evaporated, filling in freth mov'd the feeds from their places, that they could not fis? themfelves to turn the radicle down into the water: He then tried tow or hemp, and fprear is on the lead, which he frund anfwer the purpofe of fupporting the feed, which by that means grew; and the radicle taking bold of the

Vel. IX. I_{3}
Sfe
tow, it was enabled to throw up its plume or fhoot; he then tried feveral forts of fmall feecs, and found they would all grow, tho' he niade the experiment about Cbriftrpas: But he found the tow difcolour'd the water, and gave an offenfive fimell, and that the feed did not thrive kindly: He then tried wool and cotton; the cotton being too buoyant, would not anfwer the purpofe fo well: But wool, when juft buried in water, being like a jelly, and not drying fo foon on the top, even tho' the water bas left it, entirely anfwers the purpofe as well as fowing them in the earth; and if the feed be good, will keep clean for 2 or 3 months: For, this way of fowing will difcover whether the feed be mixed with old feed. He fow'd feveral forts of fallad teeds in this way, and they came to as great perfection, as thofe of the fame kind rais'd in hot beds: And thus they may be produced in any room or garret, early in the foring; and fo on till lare in autumn, and the cold weather comes in; and afterwards in the middle of winter, in room where a conftant fire is kept. He had feveral fallads in fpring, 733 , and the autumn following, by fowing diferent forts cvery week one under another, in frmall halfpenny pots; as lettuce, creffes, white muftard, rape, and raddish, which ma fortnight after fowing would be fit to cut: So that keeping a proper fucceffion, he had every week a toletable fallad for 2 or 3 perfons.
His way of fowing thefe feeds is to have a piece of lead bored fuil of holes? and made to fit the pot, about half an inch below the top, then filling it with water, he takes a little clean wool and fpreads it exen and thin, upon the furface of the lead, quite home to the fides of the pot, which will then look like a jelly, if there be too much water, he pours it off, till the wool only appear coverd or filled with water; then he fows the feed spretty thick, and in 48 hours it will begin to chip; and in a fortight after fowing will be fit to cut for a fallad.
He obferved from feveral experiments, that any of the fe plants tramplanted out of the earth into water would not thrive kindly; but thofe rais'd in water may be tranfplanted foro eath; fo that this method of raifing feeds in water may be of ure in a dry feafon, to be pricked out into the eath, that they will not come up in fuch a feafon, if fown in the ground ; yet tranfplanted from water they will take as freely to the earth, as if rais'd in it.

Mr. Curteis thinks that from the foregoing experiments in water, we may come at a better way of planting in the earth, efpecially fome roots, which are apt to rot in the ground, as anemone's, ranunculo's and hyacinths; and athat from obtervation he frequently madé, but never before took notice enough to improve it; which is, rhat he bas offen feen a bulld drop d by chance upon the ground, ftrike out fiores Atronger and more nutherous than thofe planted in their ufual depth of earth would do. The ufe he would make of this obfervation is, that when he plants his bulbs, he takes out the earth of the bed, he defighs to plant, as deep as the bulbs or roors are to ftand when planted, and he places his bulbs on the furface, till the moifture of the earth hhall have attracted their fibres, and they begin to Thoot up their plume ; and then by degrees he covers them over to the thicknefs of mould, that they fhould ftand in; by which means they will be in no danger of rotting, affer they bave got ftrong fibres. For, when we plant the te buibs or roots, it is gencrally either too wet or too dry; if it be a wet fealon; the bulbs are tob foon faturated with moifture, which rots them; and if it be too dry, they lie fo long, before they can attract moifure enough to make them vegetare, that they grow mould, and are render'd dry and hard as a piece of ftick; fo that the firt rain infallibly rots them.
N. B. Thefe experiments were made without the benefit of any fun, all his windows lying open to the noth.
As thefe experiments have open'd a new fene of knowledge
in the vegetable worla, and may be of great ufe in natural philoffiphy, and particularly improve the art of gardening; it is to be hoped the curious will carry on the enquiry, as they have leifare and opportunity?
Directions for planting buibous roots in pots or glafes of water.
When the leanen folle bottoms are fixed down tight, with in 2 or 3 inches from the bottom of the puts (which is only defigned to hold the fticks fteady that are to fupport the leavessand ftems of the flowers) lay on the lead, which is to fupport the
butbs, p p tom, as near as the fticks, when placed, will fuffer it ; then place your bulbs in each hole, and fill in water up to the lead, which will then touch the bortom of the bulb; and as the water evaporates on perfpires, keep it filled to that height, till the bulbs have Aruck their fibres pretty Atrong into the water, which may be in a month or 6 weeks; then fill in water about half an

MEMOIRS of the

inch above the lead, and by degrees as the fibres ftrengthen, and the plume or head prouts, fill it higher and higher till the bulbs' be enfirely buried under water, which muft be continu'd till the fealon for drying the in returns.

But you nuft obterve at the planting the bulbs to clean them very well from any foulnets they may have at their bortoms, by fcraping them with the puint of a knife, till the found part of the bulb appear; and likewite clear them of all their loofe tkins, and even the brown 0kin, till they appear white; ; which otherwife will difcolour and foul the water that fhould be kept as clear as poffible; and for this reafon, the notches in both the leads are contrived, that upon hifting all the water out of the pots, if there happen to be any fediment, by shaking the pots once of twice as it is pourd off, all the foulnefs may come with it:- But this fhifting of the water need not be done but once or twice in a winter, or whenever sou fee occafion by the difcolouring of foulnefs of it; and at the fame time it will be neceffary with a painter's brufh to clean off all niminess adhering to the files of the pots and bulbs, and rince them well, by pouring water on them at a litte diftance: By this methed they may be kept perfeety clean; and at any time when the outward fkins of the bults loolen and begin to flecay, clear them off, otherwife they would occafion foulnefs and whenever you lie duft fiwimming on the furface of the water, fill the pat fuil, and let it rum over, which will carry it all of; and then pour off the water to its ufual height.
N. B. Plant bulbs of equal bignes at leaft in height together in the fame pot, that they mav have the fame benefit of the water, thiffefer, Mr. Curte is plants narintus's and hya, cinths, and bulbs of that fize together ; tulips and junquils, EEc. by themfelves; and crocus and thow drops, \&ic. by thentelees.
the Gafe of a Man mevo sets poifond by earing Monks. hood or Napellus ; by Mr. Vincent Bacon. Phil. Trant. Ni432. p. 28%

ABOUT ID at night Mr. Bacon was calld to one Jobn Crumpler, a filk weaver, in Spitulejelids; when be came into the room, he found him lying on the bed, with his head fupported by a by-1tander, his eves and teeh fixt, his pole pinch'd in his hands, feet and forehead, cold, and all in a cold fweat, no pulfe to be perceiv'd, and his breath to fhort is featee to be diftinguifhd: Upon enguiry Mr. Brcon wast tuld that he had been very well all dy, and gout 8 had cat a very

ROyAL Society.

hearty fupper of pork, and a fallad dreft with oil and vinegar ; that immediately after he began to find an indifpofition. That the fallad conifited of common tallad herbs, bought at a fall in the market, except fome falary, picked nut of their own garden. Mr. Bacoin fofpecting that he had been eating fome poifonious herb, afk'd if he found in the beginning of the difordee any medination to vomit? And he was told, none, but that when he found his illnefs come upon him with great violence, he thought bimelf poifon'd, and forth with drank a large quantity, of cill, about a pint in all, and after that loaded his itomach with carduris-iea till he vomited, and tho he threw up the greatef part of his fapper, yet the fympioms fill increas'd, which made Mr. Bason be fent for: Bur before he could get to him, thifigs were come to the extremity above-defcribed: Having nothing at hatid but a tea foonful or two of firit of hartshorn he forced open his teeth with the handle of a fpoon, and as his fiead was rethred, be pourd the pirit into his mouth, which rous'd him a litle and firt fet him a coughing, and next a vomiting: Mr. Bacon tonk the advantage of the litile fenle that was returned, and continued plying the patient with carduustea, till be had vomited feveral times more; but he could not hinder his fanoning often between the times of reaching, tho' he gave him after each time 40 or 50 drops of Sal volatile © Tinctur croc. a a p. e. in a glafs of wire, the parient at length began to" find a working downwards, as he afterwards exprets'd himfeif, which was follow'd by a fool, after which he vomited 2 ot 3 'times more, and then he faid his head was fo heavy, and his ftrength and fpirits fo exhauted, tho his ftumach and bowelswere much cafier, that he muft neens lie down: His pulte was then a little returned, tho' very much interrupted and irregular, fometimes beatiog = or 3 frokes very guick together, and then making a flup of as long or a longer time than the preceeding ftrokes tugether took up. Having obferv'd that what he had laft vomited was litle more than the pure carduustea, Mr. Bacon gave him a draught made of Aq. Efidem. Tber. Androm. Conf. Alkerme, EEC. and gave orders to make him fome fack whey to dribl between whiles, fometimes alone, and in cafe uf grear fainnefs, with fome of the abovementioned drops. It being near i oiclick, Mir. Bacon lefthin; and cal ling to fee him next morning, the found him much better: The patient had lain awake, thin ftull an hour or two after he left hin'; bur ueing very cold and cbilly had agreat deal of covering laid apon him, and the he had a kindly watanh come
over his limbs, fucceeded by a moderate fweat, and then a quiet fleep of 4 or 5 hours from which he waked very much refrefh'd: His fenfes had never fail'd him but during the fwoonings. Mr. Bacon could fee none of the fallad but the falary, which being the produce of their own garden, the boy who gathered it the evening before, was order'd to fetch fome more of the fame, he preiently brought a fpocimen, which Mr. Bacon took to be the common Monks-bood of our gardeng, called by Morijon in his Prehd. Botan Aconitum fpical forums pyramidali.

The alterations the patient found in himfelf after eating it, and the manner they came on, were as follows: The fiff fymptom was a fenfation of a tingling heat, which not only affected his tongue but his jaws, to that his teeth feemed loofe, and his cheeks to much irritated, that the people about him, nay even his looking glafs could fearce perfuade him, but that his face was fwelld to twice its proper fize: This tingling fenfation Spread itfelf farther and farther, till it had taken hold of his whole body, efpecially the extremities; he had an unfteadinefs in the joints, eipecially of the knees and ancles, with twitchings upon the tendons, fo that he could farce walk a-crots the room; and he thought that in all his limbs he felt a fenfible flop or interruption in the circulation of the blood; and that from the wrifts to the finger ends, and from the ancles to the roes there was no circulation at all; but he bad no ficknefs or difpofition to vomit, till he took the oil, Ec. Afterwards his head grew giddy, and his eyes mity and wanderings and next, a kind of humming or hiffing noife feem'd continually to found in his ears, which was follow'd by the abovenentioned fyn. cope's.

A woman, who had fupped with the patient, having before been uut of order, and not then perfeclly recover'd 2 eat but fairIngly but took this fuppoisd falary along with the other berbs; and felt and complained of all the fame fomptoms, but in"a lefs degree than the man had done. She wauld not be preyail'd on to vomit, but only tonk the cordial draught above detribed. The man became quite well, but che woman continu'd the of order: And yet there was not put ino the whule JAd d pore than what grows upon one of the rootsmedy yobars

[^2][^3]Aurrex Boreales obferved at Witemberg in $1752 ;$ yy 2 A Weidler. Phil. Tranf N 43^{2} P. 292. Tranfated froms the Latin.
FEEb. 18. 1932, O. S. about 19 in the evening, the fiky ferene. there appeared an aurora borealis: For, at that time a bláck arch, whofe middle was 20 degrees high, was feen in the north, where a little before, that fame evening, the fly was obferved ferene. The part of the heavens over the black arch was white, and from it at times, fhot forth the ufual radiations of the himen boreale, or the luminous pyramids; as allo very thin white vapours, like fmall clouds, were carried with a fwift motion towards the wertex.

At ro iclock the motion of the luminous matter feemed to ceafe for fome time; yet prefently from that white part of the heavens white undulating vapours iffued; but the reprefétation of a canopy near the vertex was not feen.

At 30 minutes after ro, the white fafcia of the dark arch was dilated; but the bright vapours came out from it more fparingly
The fhining pyramids arofe on both fides near the north point; buit the fluctuating vapours were more frequent towards the weft : The air was all the time fill and calm.
O Ct. $12,1532, \mathrm{O}$ S. simmediately after σ in the evening, there again appeared an aurora borealis; namely a dark arcls was expanded berween NNW. and NE. Above the arch there was'a remarkable bright fpace of the heavens, about io degrees broad, but not exactly expreffing the figure of an arch. The broader portion declined about 10 degrees from the north to the weft; and from thence, as from the fountain of the luminoús matter, at q_{3} ol minutes after σ, many white pyramids iffued, which almolt reached the veryzenith; fome of them were red and vaniffied foon, one in particulah, extended betweers the Crown and Hercules, continued for a longer time $4 p$ to the very zenith: M:Weidler sblerv'd only one tadiation to the N.E. In a quarter of an hour this footive fcene was ended The clouids, which before ftood unmoved to the welt, difien by a foutherly wind, were diffured, and tended to the ealt: Yet under them to the eaft the brighe part continued, and the black arch was fet below the horizon; the white arch that was over the black one, defiended together with the clouds below the horizon; and both the darknets and the thin clouds being diffi-.

512 MEMOIRS of the

 pated, at $70^{\prime} \mathrm{clock}$ the fky became on all hands ferene: Yet all that night a thin light poffers'd the northern part of the horizon.Befides thefe, which M. Weidler himelf obferv'd; there were likewife other lumina borealia, but not fo bright, on the zoth of Mar. I3th of Apr. 11th and 30th of Aug. 1732, O. S. but as to their particular phenomena he had no certain account.

By thefe and other obfervations M. Weidler had taken of this northera light, he was more inclined to Dr. Halley's furmife, that its feat is about the magnetic. pole; or at leaft that its moaion is in fome meafure governed and determined from thence.

As to the effect of the aurora borealis, it does not hitherio fufficiently appear; only M. Weidler oblerv'd that generally one or more very clear days immediately fucceed it. The Sezedes and Norgeegians, to whom this phenomenon frequently appears, are faid to bave learned by long experience, that the northern bight, when it fhines more frequently abour the beginning of autumn, portends milder wedther and a plentiful harveft; on which forore, they communly call it zornmot, i. e. the ripening of corn, They likewife reckon jits freguency in winter in prefage and indicate fevere cold ; as. M. Leopohl gives Dr Woodrward an account in his Relatio epifolica de itimere fuo Sueciro, p. 19. Edit. Lond. Anno 1720. To the former hypothefis agree the experiments taken at W itemberg. in autumn $17 \hat{1} 1$: For, on the $4^{\text {th }}, 7^{\text {th }}$, 8 th, Icth and 2 and $^{\text {d }}$ of OEtober 17as, N . S: a very frequent and bright lamen loreale was obferved, which was fuccecded by fuch feafonable weather, that corn and fruir were very plentiful in $17 \mathrm{~S}^{2}$.
Of the defroying the Caterpillars and Locufts, that infefied the neighbouring Parts of Witemberg; by the fame. Phil. Tranf, No 4î2. P. 294: Traunguted from the Latin.

AMongt the particular obfervations of the year 1732, the following is worth mentioning, namely, the deftroying the carerpillars and locufts, that for feveral years before had in a melancholy manner eat up the fruits of the earth in the ngrthern parts of the circle of Saxong, the Marckt of Brandenburgh; in J.uifatia, and probably in other places. In fpring 1732 both thefe forts of infects were produced in incredible numbers. The caterpillars in feveral places fonn deftroned all the leaves both of batren and fruit trees; and the locuffs likewife threataed again the greated deftruction to the fruits of the

Royal Socrety.

earth as the preceeding years: The countrypeople, thetefore, began to dig feveral pits, and gather the locufts that had not fitength enough to fly, into them, and fo cover them with earth and kill them.

But this contrivance would have been of little avail, had not thefe infects been providentially weakened and deftroyed by fome inclemencies of weather; in fuch manner that they all foon perifned the beginning of the fummer, before they could propagate : For, after that the kindly heat of the fon about the beginning of April, $1732,0.8$. had invited them from theit nelts fooner than ordinary, and this heat was fucceeded by a fudden fevere cold for fome nights, as of the $15,16,17$ and 18 of April, and likewife by cold and plentiful fhowers of rain on the 22 . of Apr. and 19. of May; and afterwards by conftant ant plentifu] rains about the latter end of M avy, and for the greateft part of Fune and fuly; on thefe accounts it was, that thefe noxious animals did not arrive to their ufual fize and itrength of body: So that they were ftill fmall, about the beginning of Fune, and had not reach'd to that juft proportion of their limbs, to which they ufually arrive about this time of the year. The locufts, in particular, impatient of wet, were in the begiming of Fuly found dead all over the fields; and many of them, that had retired into the longer falks of herbs and flowers, and had fuck clofe to them by their mouths, hang dead from them. That this, probably, was the caule of the deftruction of the locufts, appears pretty evident; becaufe we find by experience, that this fpecies of infects frequents the higher and drier grounds only, and neftle there, and always avoid the low valleys. As to the thape of thefe locufts, they were different from the green ones, commonly oblerved every year, in the Eedd and meadows, and which arefew in number. The colour of the head and back was black, and in fome, grey, with yellow fpecks interfperfed; their belly was yellowifn; the muctes of the hinder feet red; and when they were on wing, they looked of a purple colour. The bodies of moft of them were not above $1 \frac{x}{3}$ inch in length; tho' in Aug. 173 IM . Weidler obferved fome Shrivell'd up, to be upwards of 2 geometrical inches. In the fame month the male and female copulaie, each dam conains upwards of 30 egrs, which they lay in holes made in the earth; and at the clofe of September they die upon them. M. Weidler was rold, that 4 years before, when they firt came to thefe parts from Foland thro' Lufatia and the Marckt rhey faw high in the air in a body, in the middle of fummer,

Vox. IX. x_{3} Ttt above

514 M EMOIRS of the Ec.

above the tops of the houfes and turrets; fo that at a diftance they had the appearance of a clond.-On whatever place they alighted, they covered it quite, and fpread far and wide. They feemed to be fond of the more tender tops of the ears of corn, to gain which the better, they cut down the entire unripe ear; and this they dide efpecially in the night time. M.Weidler was told by credible perfons, that in one night the ears of whole fields were cut down in fuch manner, that in fome villages the poor farmers had not even the feed they fow'd.

-

$\frac{1}{6}$

THE

T H E

A.

ANgles, an Inftrument for taking them by refleations Pag. 203, jeq. 301. Seq. Arcutio Afh trees Springing from rotien $\begin{array}{r}252\end{array}$

Wood Aftronomical Obfervations 33 feq. Aurora Borealis, an Account thereof

48, feq. 161, feq. -a Pbilofopbical and HiAlorical Account of 490, Seq. Axis is Peritrobbio, a neru inuented one

B.

5ARK, its ufe in Mortifications 379, feq. Barometer, a Defcription of one 382, Seq. Beaver, Difection of it. 461 , Seq. Bile, its ufe in the animal Oeconomi y 77, feq. 366, Seq. Bills of Mortality 404, Seq. Bronchotome, ais Account of that Operation 126, feq. Bulbous Plamts, their Floweering 175, frg. $501,1 \mathrm{loq}$.

Amphire of Tbyme 471, feq. Caftor, an Acrount of it 465 ,
Katemilfor 513 Seq. Cereus Persvianus deforibid 136, feq.
Child born with the Bowels banging out of the Beliy

253
Chronological Table of tine Cbinefe Hiffory explained rog, feq.
Cinnamon-tree, Account of it 190 , jeq.
Contrayerva, an Account of it. 229, jeq. Cochineal, its natural Hifory 40 . Seq. Coccus Polonicus, an Account there. of $242,26_{4}$, Jeq. Colic, a fingular Sor: thereof 248 , fiq.
Comet, an Account of one 339

D.

DAMPS, their Efects and Praperties 4, Jeq. 41?, req. Diamonds, an Sccount of thom 233, 102.

The IN D EX.

E.

EArthquake in Apulia 397 in Maryland $\quad 425$ Hicelicity, Experiments thereon 145, seq. 272, fea.340, Seq. 497 Seq.
Equuleus an Account thereof 23 , Seq. Explosion in the Air 425, Seq.

F.

FLuxes, the Difficulty of Curing 334, Seq. Foetus delivered by the Anus ing, Force of moving Bodies, Expertment on it 44, Seq. Foffil Scull 35^{8}
Friction of Engines reducible to Calculation 27.6, Seq. Froftin 1730-1 Account thereof 144, Seq.

H.

HEnbane, the Syanetoms arising from Eating its Seeds $4: 12$ Seq. Hirundinella Marina deforibed 105 seq. Horn, a large one taken out of the

Sea. 252 Hydrometer, a new Kind of it Hydrops Ouarii ang.jeq.

1.

Wi dis, Foturs, Observations on
1 it bat Meteor 9, 69. Inoculation on Cbilden, Success of it 426 /eq. Infects, a remarkable Generation intermitting Fevers, bow cured ${ }^{425}$

Jupiter Satellites, Eclipses of therms 92, Seq. 132 , Seq. 221 , Seq. 291, Seq. 423 , seq.

L.

TAurel-water found to be Poifamous 213, Seq. I77, Seq. Leaves, the Veins and Arteries in them $\quad 9^{6}$ Seq. Lightning, its Effects 124 , Seq. Liver, an Impogibumation thereof 222
Lobster, an Hermaphrodite one Locust 413 54 Longitude, a Propofal for finding it. 223, eq. Lunar Eclipse. 15, Seq. 90, Seq. 93, Seq. 122 , Seq. 134 , Seq. 294, Seq. 401 , eq.

M.

MAgnetical Observations 57, Seq. 395

- Virtue communicate without a Londflone 278, Magnetic Needle, an urufual fog. ration therein

161 Mangotans, a new Genus of Plants 484, Seq. Mars, an Occultation of bim by the Moon 293
Mechanical Paradox 194, Seq.
Mercury, Experiments on it 446
Seq.
Meteorological ObServations 33, Seq. 232 , Seq. 314 , Seq. 346,414 , seq. Mortar, the Manner of making the heft $246 / \mathrm{feq}$. Mortification Checked by the Bark 359 feq. Muff, Remarks on that Family of Plants
193. Seq.

The I N D E X.

N.

S.

NEbulous Stars, Appearances among tbem 392, feq. $\overrightarrow{\text { Nervous Fluid, the Proof of it's }}$ exiflence 295, feq. Napellus or Monk's Hood, case of a. Man poifon'd by eating it 508 Seq.
O.

0Bfervations Meteorologica? and Altronowical 33, feq. and Aftonomical 33, Jeq.
Variation 297, feq.
Occultations of fixi Stars 130, Seq. 293, Jeq. 95, Seq. Oltrich, Obfervations in Difecting it 46, Seq. Oxyoides, a new Family of Plant; 98, feq.

P.

1Apor of the Ancients 211, Seq.
Phofphorus Urina, experiments on it
Plica Polonica, ats Account thereof $160, \int e q .358$, req.
Polypus cougbed uîp 192, feq.
Printing, le Blon's Principles there-
of $: 86$ Pullies. Experiments on their Friction

339, feq.

Q.

ΩUadrant, a nerw one 266 , Seq.
R.

P Unpure, an Umbilical 243

DAlt-zvorks of Soowar, an Account of them. 38, Seq. Saturn is conjunction with the Moon … $1 \$ 2$ Saturn's Ring, its Nature, and manner of forming it 250 , Seq. Scabiofa, the virtue of a Species of it is Fevers 3
Sea-leechl Dejcribed 105 Seq. Skin Difempered 280, Seq. Solar Eclipfe 108, Seq. 219, Seq. 421, feq. 444, Seq. Spermatic Veffels, uncommon Anafiomofes of them 97, Seq. Spirit-level 457, Seq. Spiritus Vini cetbereus, an Account of it 50 Seq. 384, Seq. Springs, the Nature of reciprosating and intermitting ones 282 jeq. Squirrel, the fying one 379, feq. Stars, their Appearing and Difap pearing

$$
250 \text { feq. }
$$ Stomach, a Stricture in its Middle 253

Stone in the Uretbra $\quad 37$ ——broken in the Bladder 143, feq. 15 Stylus of the Ancieinis 209 fe?

T.

U.

Veretables, thair Anatomical Pre123, Seq.
The I N D E X.Venus, an Occulfation of ber by Water its Electricity244
the Moon 36, jeq. Water-fpout 397
Vefuvius, an Eruption of it 299, Water-works at London-bridge de-Vomiting of Blood cured by Drink- Well, an ancient one, near 2ueen-irg cold Liquors 196, feq. borougb 8, Jeq.Urine a Suppreffion thereof 253 Worms in the Kidneys of Wolves,
W.
TTAter Freezing inftantans- oufly
174
$C O R R I G E N D A$.

DAGE 24. I. 18. for, there qualeus r. the equileus. P. 28. l. 38. for nations r. notions. P. 222. l. 28. for acid f. acrid. P. 232. l.28. for timer r. times. P. 474. for reged r. rigid. P. 477. l. 12. r. from mint and fweet rufhes of Ceylon and from Southernwood, ibid. l. 17. for Mace'd. r. mace. P. 478. l. I. for there 5. three. ibid. 1. 20. dele an

Vo. L. VIII. PAGE 37.1. 35, 36. r. M. Neuman affirms, that camphire could abide or ftand the fire; but that of Mr. Brown could not at all.

The END of the Ninth Volume.

$3 \times 84018 \mathrm{~F} 08$

[^0]: Voz. $1 \mathrm{X} . \mathrm{N}^{\circ} 9$.

[^1]:

[^2]: ants wolod

[^3]:
 B2569

